Causal Intervention for Subject-Deconfounded Facial Action Unit Recognition
DOI:
https://doi.org/10.1609/aaai.v36i1.19914Keywords:
Computer Vision (CV)Abstract
Subject-invariant facial action unit (AU) recognition remains challenging for the reason that the data distribution varies among subjects. In this paper, we propose a causal inference framework for subject-invariant facial action unit recognition. To illustrate the causal effect existing in AU recognition task, we formulate the causalities among facial images, subjects, latent AU semantic relations, and estimated AU occurrence probabilities via a structural causal model. By constructing such a causal diagram, we clarify the causal-effect among variables and propose a plug-in causal intervention module, CIS, to deconfound the confounder Subject in the causal diagram. Extensive experiments conducted on two commonly used AU benchmark datasets, BP4D and DISFA, show the effectiveness of our CIS, and the model with CIS inserted, CISNet, has achieved state-of-the-art performance.Downloads
Published
2022-06-28
How to Cite
Chen, Y., Chen, D., Wang, T., Wang, Y., & Liang, Y. (2022). Causal Intervention for Subject-Deconfounded Facial Action Unit Recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 36(1), 374-382. https://doi.org/10.1609/aaai.v36i1.19914
Issue
Section
AAAI Technical Track on Computer Vision I