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Abstract
Invariance to diverse types of image corruption, such as noise,
blurring, or colour shifts, is essential to establish robust mod-
els in computer vision. Data augmentation has been the ma-
jor approach in improving the robustness against common
corruptions. However, the samples produced by popular aug-
mentation strategies deviate significantly from the underly-
ing data manifold. As a result, performance is skewed toward
certain types of corruption. To address this issue, we propose
a multi-source vicinal transfer augmentation (VITA) method
for generating diverse on-manifold samples. The proposed
VITA consists of two complementary parts: tangent trans-
fer and integration of multi-source vicinal samples. The tan-
gent transfer creates initial augmented samples for improving
corruption robustness. The integration employs a generative
model to characterize the underlying manifold built by vici-
nal samples, facilitating the generation of on-manifold sam-
ples. Our proposed VITA significantly outperforms the cur-
rent state-of-the-art augmentation methods, demonstrated in
extensive experiments on corruption benchmarks.

Introduction
Existing computer vision systems are not as robust as hu-
man vision systems (Recht et al. 2018; Hendrycks and Di-
etterich 2019). A human vision system would not confused
by a wide range of naturally occurring corruptions, includ-
ing noise, blurring, and pixelation, as well as some unex-
pected combinations of them. However, existing deep mod-
els (Krizhevsky, Sutskever, and Hinton 2012; Xie et al.
2017) trained on clean images usually perform substantially
worse, confronted with corrupted images (Geirhos et al.
2018; Hendrycks and Dietterich 2019). Achieving corrup-
tion robustness is a primary objective of a variety of com-
puter vision tasks.

The most effective and commonly used method for im-
proving corruption robustness is data augmentation, in
which training samples undergo label-preserving transfor-
mations (Dao et al. 2019), formalized by the vicinal risk
minimization (VRM) principle (Chapelle et al. 2000). Em-
ploying adversarial examples (Goodfellow, Shlens, and
Szegedy 2015; Madry et al. 2018) or transformation strate-
gies (Devries and Taylor 2017; Zhang et al. 2018; Yun et al.
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2019) based on human expertise brings limited benefit to
corruption robustness. This is due to the fact that these
two methods of augmentation fail to provide sufficiently di-
verse vicinal samples. While advanced methods based on
generative models (Geirhos et al. 2019; Rusak et al. 2020;
Hendrycks et al. 2020a) and combination strategies (Cubuk
et al. 2019; Hendrycks et al. 2020b) are capable of producing
diverse samples, they frequently generate samples that devi-
ate severely from the data manifold. These samples impair
the classifier’s ability to estimate the underlying data man-
ifold accurately, resulting in performance degradation and
bias towards specific corruptions.

To mitigate this defect in data augmentation, we propose
a multi-source vicinal transfer augmentation (VITA) method
for generating diverse on-manifold samples. The proposed
VITA is composed of two components: tangent transfer and
integration of multi-source vicinal samples. First, we lever-
age vicinal differences to approximate the manifold tan-
gents to acquire initial augmented samples. Subsequent ex-
periments show that these weakly augmented samples ef-
fectively improve corruption robustness. Second, we use a
generative model to characterize the underlying data mani-
fold constructed by weakly augmented samples (e.g., sam-
ples rotated by 5 degrees) and adversarial examples. This is
to ensure that a diverse set of samples is generated while
avoiding significant deviance from the data manifold (Ben-
gio et al. 2013). Detailed experiments confirm that our VITA
can significantly improve corruption robustness and encour-
age a balanced performance on corrupted datasets.

In summary, our key contributions are as follows:

• To address the uneven performance toward various cor-
rupted images, we propose a multi-source vicinal transfer
augmentation (VITA) method for generating diverse on-
manifold samples.

• We introduce tangent transfer that enforces the local in-
variance of the classifier, which facilitates the discovery
of shared structures in the tangent planes.

• We design an integration module of multi-source vici-
nal samples that constructs a proper data manifold and is
shown to effectively generate on-manifold samples.

• Our proposed VITA achieves state-of-the-art perfor-
mances on corruption benchmark datasets CIFAR-10-C,
CIFAR-100-C, and ImageNet-C. Meanwhile, we demon-
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Figure 1: Diverse on-manifold samples boost performance. (a) shows an underfitting phenomenon caused by the lack of suf-
ficiently diverse vicinal samples. (b) takes a strong adversarial attack as an example to show the performance degradation
caused by off-manifold samples. Classifiers tend to overfit these off-manifold samples and fail to construct a proper underly-
ing manifold. (c) demonstrates the benefit of tangent transfer. While maintaining sample variety, it will not generate severe
out-of-manifold samples. For a better understanding of samples that depart from the manifold, see our appendix for a three-
dimensional schematic diagram.

strate VITA also boosts adversarial robustness.

Related Work
Corruption Robustness. The human visual system is not
easily defrauded by data with various forms of corrup-
tion, such as snowflakes, blurring, pixelation, or their com-
binations. In contrast, most current deep learning mod-
els suffer from severe performance degradation under cor-
rupted data (Vasiljevic, Chakrabarti, and Shakhnarovich
2016; Dodge and Karam 2017; Azulay and Weiss 2019; He
and Tao 2020). For example, (Geirhos et al. 2018) reveal
that deep neural networks trained on one type of corrup-
tion (e.g., salt-and-pepper noise) cannot recognize another
unseen type of corruption (e.g., uniform white noise), even
though these two kinds of corruptions are indistinguish-
able to humans. Currently, research on improving corrup-
tion robustness mainly focuses on domain adaptation (e.g.,
additional operations on the normalization layer) (Schnei-
der et al. 2020; Tang et al. 2021), adversarial perturba-
tions (Hendrycks and Dietterich 2019) and data augmenta-
tion (Zhang et al. 2018; Hendrycks et al. 2020b,a; Kamann
and Rother 2020; Rusak et al. 2020). To evaluate the corrup-
tion robustness of models, (Hendrycks and Dietterich 2019)
introduced three comprehensive benchmarks, CIFAR-10-C,
CIFAR-100-C and ImageNet-C, for unseen corruption ro-
bustness. Since then, similar datasets on common corrup-
tions have also been proposed in the field of object detec-
tion (PASCAL-C, COCO-C and Cityscapes-C) (Michaelis
et al. 2019) and semantic segmentation (Kamann and Rother
2020).

Data Augmentation. Data augmentation is one of the
most widely studied and effective techniques to improve
the corruption robustness of models. For example, Mixup
(Zhang et al. 2018) is a simple augmentation strategy that
performs a linear interpolation between two different classes
of samples. Although it was not specifically proposed to im-

prove corruption robustness, its performance is significantly
better than other commonly used data augmentation meth-
ods (Dodge and Karam 2017; Yun et al. 2019; Cubuk et al.
2019). Another effective data preprocessing method called
AugMix (Hendrycks et al. 2020b) obtains advanced perfor-
mance on CIFAR-10-C, CIFAR-100-C and ImageNet-C. It
utilizes a formulation to mix multiple augmented images and
adopts a Jensen-Shannon Divergence consistency loss. Fur-
ther, (Rusak et al. 2020) demonstrate that data augmented
with Gaussian noise can serve as a simple yet very strong
baseline for defending against common corruptions.

Proposed Method
In this section, we present the proposed method VITA in
detail. Our proposed VITA involves two stages. The first
stage, tangent transfer in yields initial augmented sam-
ples for improving corruption robustness. The second stage,
multi-source sample integration in generates diverse and on-
manifold samples to further improve corruption robustness.
In , we describe how to train with VITA samples.

Tangent Transfer
Exploiting Shared Manifold Structure. (Bengio and
Monperrus 2004) used the shared structure of the tangent
space of the manifold to mitigate the curse of dimensionality
in the previous local manifold learning algorithms. Gener-
ally, in many real-world contexts, there is not just one global
manifold but a large number of manifolds that share some-
thing about their structure (Bengio and Monperrus 2004;
Lasserre, Bishop, and Minka 2006). However, existing re-
search on data augmentation ignores leveraging this char-
acteristic of the data manifold. A simple example is trans-
formations in the image (rotation, lighting, blurring etc.).
There is one manifold for each transformation type. If there
are only a few samples of a specific type of transforma-
tion during training, it is hard for models to learn a proper
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Figure 2: Our proposed VITA includes tangent transfer and multi-source integration. We adopt vicinal difference (∆X) as an
approximation of the manifold tangent and use X + λ ·∆X as an initial augmented sample. Our generative model includes a
pix2pix model, which is designed to generate diverse on-manifold samples. The goal of multi-source integration is to learn,
based on dataset D = {Xv, Y } (Xv = {Xaug, Xadv}), an embedding that imitates the generation process of vicinal samples
P (xv|x, δx), where x is an original samples and δx ∈ ∆X(∆X = Xv −X). Note that δx is a transferred vicinal difference.
In our robust multi-source training, models are trained with multi-source samples and samples from a well-trained translator.

data manifold. As shown in Fig. 1, this leads models to di-
rectly memorize these special cases instead of generalizing
(i.e., yields the high complexity or unsmooth data manifold).
This, we believe, is the core reason for the model’s poor and
uneven performance against various forms of corruption. If
the learned structure of the data manifold is shared, models
can more accurately characterize a smoother data manifold.

In this work, we use vicinal differences as a rough ap-
proximation of manifold tangents. Transferring vicinal dif-
ferences enforces the local invariance of the classifier and
encourages the classifier to discover shared structures in the
tangent planes at different positions. We argue that approx-
imating the tangent direction of the manifold with the vici-
nal difference of high-dimensional space can yield more di-
verse samples, which differs from a model-sensitive measure
(Simard et al. 1991, 1996; Lopes et al. 2020). Subsequent
experiments demonstrated the effectiveness of introducing
shuffled vicinal differences.

In specific, vicinal differences are obtained by subtracting
the original samples from the vicinal samples. Here, vicinal
samples are crafted through diverse data augmentation oper-
ations and adversarial attack methods. The tangent transfer
is realized by adding shuffled vicinal differences.

Transformation Guided by Priors. First, we introduce
several hand-crafted methods for weakly augmented sam-
ples used in our work, including rotation, shearing, translat-
ing, cropping and scaling (detailed settings of these augmen-
tations see appendix). To make the augmented sample more
consistent at input level, we need to control the intensity of
the change: ||δx||2 = ||xaug − x||2 < ϵ2, where ϵ is a hyper-
parameter (ϵ2 = 0.5 by default), x is an original sample and
xaug is an augmented sample.

Harvesting Adversarial Perturbations. In contrast to
data augmentation, crafting adversarial examples makes use
of existing trained models instead of priors from human
experience. Thus, we employ several algorithms to gener-
ate adversarial examples, including the fast gradient sign
method (FGSM) (Goodfellow, Shlens, and Szegedy 2015),
projected gradient descent (PGD) (Madry et al. 2018), mo-
mentum iterative method (Dong et al. 2018), C&W method
(Carlini and Wagner 2017) and Elastic-Net Attack (Chen
et al. 2018) (detailed hyper-parameter settings see ap-
pendix). For different well-trained models, the adversarial
examples of a given seed x will vary because of the di-
verse loss functions and hypothetical spaces. However, they
all reflect the local structure of the seed x from the differ-
ent perspectives. For adversarial examples, we also control
the magnitude of perturbations. For all datasets, we use the
ℓ∞− and ℓ2− adversarial attack methods with fixed budget
of ϵ∞ = 0.031 and ϵ2 = 0.5.

Multi-Source Samples Integration
Utilizing Differences via a Generative Model In the fol-
lowing experiments, we integrate all the crafted samples,
which include the multi-source vicinal examples from data
augmentation and adversarial perturbations, into a dataset
D = {Xaug, Xadv, Y } and treat them equivalently. Note that
xv ∈ {Xaug, Xadv} is the input data and y ∈ Y is the label
of xv . Our goal is to learn, based on dataset D, an embed-
ding that imitates the generation process of vicinal samples
P (xv|x, δx) given x and δx. Note that δx ∈ ∆X is a trans-
ferred vicinal difference. To this end, we use an adversarial
loss (Goodfellow et al. 2014) to implement the embedding
and build two basic models: a sample-to-sample translation
model T and a discriminative model D.

Mapping from input distribution to output distribution in
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high-dimensional space is challenging (Zhu et al. 2017).
Thus, we start with the pix2pix framework (Isola et al.
2017), which has previously been shown to produce high-
quality results for various image-to-image translation tasks.
In our appendix, we also elaborate on the ablation experi-
ments related to the translator, discriminator and the impact
of using a more complex framework such as BicycleGAN
(Zhu et al. 2017).

Translator. The sample with vicinal difference may not
fall on the local data manifold because of the complex high-
dimensional data space. Thus, we need to build a translator
to embed the raw intermediate product x + δx into the on-
manifold vicinal sample xg = T (x+ δx). As shown in Fig.
2, inputs to our translator are the samples added with shuf-
fled vicinal differences, and outputs are desired samples on
the data manifold. By default, when training the translator,
we include the same proportion of augmented and adversar-
ial data. Our translator takes advantage of a U-Net structure
(Ronneberger, Fischer, and Brox 2015), which enables the
transmission of hierarchical information across a network by
skipping layer connections. In our experiments, the U-Net
structure has shown its effectiveness to preserve the vicinal
differences. For more details on the superiority of the U-Net
architecture, see our ablation experiments in the appendix.

Discriminator. We denote our discriminator as D, and
D(xg) indicates the probability that a generated sample
xg comes from the real vicinity. In our network, we use a
1×1 PatchGAN (Isola et al. 2017) discriminator by default.
PatchGAN discriminator is a type of discriminator for gen-
erative adversarial networks which only penalizes structures
at the scale of the local image patches. The PatchGAN dis-
criminator tries to classify whether each patch in an image
is real or fake.

Objective Function. The embedding of the translator and
discriminator is configured using neural nets. We describe
the main part of loss below.

LGAN(T,D) = Ex,xv∼p(x,xv)[log(D(x, xv))]+

Ex∼p(x),δx∼p(δx)[log(1−D(x, T (x+ δx)))]
(1)

Here, p(x, xv) represents the joint distribution of the original
samples distribution x and the vicinal samples xv distribu-
tion, p(x) denotes the distribution of x, and p(δx) represents
the the distribution of vicinal differences.

Robust Training Process
We argue that multi-source samples can provide more vic-
inal information, as shown in Fig. 1. In order to make full
use of multi-source samples, we divide samples into three
categories according to their source, namely the weakly aug-
mented samples, the samples added with shuffled adversar-
ial perturbations, the samples generated via VITA. During
training, we split the samples in each batch into weakly
augmented samples (25%), shuffled perturbations samples
(25%) and generated samples via VITA (50%). Among the
generated samples, half of the vicinal differences for the
translator come from weakly augmented samples, and half

of them are generated from shuffled adversarial perturba-
tions. More specifically, we apply a Jensen-Shannon Diver-
gence consistency loss as a regularization term to enforce a
consistent embedding by the classifier across further diverse
augmentation. More details on our robust training process
can be found in our supplementary materials.

Experiments
Dataset. CIFAR-10 (10 categories) and CIFAR-100 (100
categories) both contain small 32 × 32 × 3 colour images,
with 50k for training and 10k for testing. The ImageNet
(Deng et al. 2009) dataset includes 1,000 classes and con-
tains approximately 1.2 million images annotated according
to the WordNet hierarchy. To evaluate the corruption robust-
ness of models, we conduct experiments on the CIFAR-10-
C, CIFAR-100-C and ImageNet-C datasets (Hendrycks and
Dietterich 2019). These datasets are constructed by corrupt-
ing the original images from the CIFAR-10, CIFAR-100 and
ImageNet test sets. Specifically, the CIFAR-10-C, CIFAR-
100-C, and ImageNet-C datasets consist of 15 types of algo-
rithmically generated corruptions from noise, blur, weather,
and digital categories. Each type of corruption has five levels
of severity, resulting in 75 distinct corruptions. Since these
datasets are used to measure model performance under data
shifts, we take care not to introduce the 15 corruptions into
the VITA process and robust training procedure.

Figure 3: Effectiveness of directly transferring differences.
We compare the corruption robustness of models trained
with different augmentation methods, including Gaussian
noise (Gaussian), adversarial perturbations (adv), trans-
ferred perturbations (trans adv), weak augmentation (aug),
transferred differences from weak augmentation (trans aug).
We evaluate corruption robustness (error rate, the lower,
the better) on CIFAR-10-C with an AllConvNet architec-
ture. Here, clean indicates the performance on clean (uncor-
rupted) images, noise/blur/weather/digital is robustness to-
wards the corresponding corruption types and mCE is mean
corruption error for all types of corruption. As seen, trans-
ferring vicinal differences improves robustness significantly.
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Standard Cutout Mixup CutMix AutoAug Adv Train AugMix ME-ADA VITA

CIFAR-10-C

AllConvNet 30.8 32.9 24.6 31.3 29.2 28.1 15.0 21.8 10.6
DenseNet 30.7 32.1 24.6 33.5 26.6 27.6 12.7 23.1 9.7
WideResNet 26.9 26.8 22.3 27.1 23.9 26.2 11.2 16.7 9.5
ResNeXt 27.5 28.9 22.6 29.5 24.2 27.0 10.9 16.6 8.9

Mean 29.0 30.2 23.5 30.3 26.0 27.2 12.5 19.5 9.7

CIFAR-100-C

AllConvNet 56.4 56.8 53.4 56.0 55.1 56.0 42.7 48.8 36.3
DenseNet 59.3 59.6 55.4 59.2 53.9 55.2 39.6 52.2 35.4
WideResNet 53.3 53.5 50.4 52.9 49.6 55.1 35.9 47.2 34.4
ResNeXt 53.4 54.6 51.4 54.1 51.3 54.4 34.9 42.7 31.5

Mean 55.6 56.1 52.6 55.5 52.5 55.2 38.3 47.7 34.4

Table 1: Mean corruption error (mCE) on CIFAR-10-C and CIFAR-100-C. Average classification error as percentages. Across
several architectures, our method obtains obvious enhancement in corruption robustness. Specifically, we reduced the error rate
of corrupted data to 8.9 on ResNeXt.

Metric. The clean error is the usual classification error on
uncorrupted test images. In terms of measuring corruption
robustness, we use mean error at five different intensities or
levels of severity, i.e. 1 ≤ s ≤ 5. Let Ec,s denote the test
error of corrupted images from corruption type c and under
severity level s. For CIFAR datasets, we use the mean cor-
ruption error (mCE) over fifteen corruptions and five severi-
ties, i.e. mCE = 1/75

∑15
c=1

∑5
s=1 Ec,s. For ImageNet, we

follow the convention of normalizing the corruption error by
the corruption error of AlexNet (Krizhevsky, Sutskever, and
Hinton 2012), i.e. CEc =

∑5
s=1 Ec,s/

∑5
s=1 E

AlexNet
c,s .

The mean of the 15 corruption errors gives us the mCE =

1/15
∑15

c=1 CEc.

Effectiveness of Transferring Differences
Setup. Our verification experiment is based on the All-
Conv (Springenberg et al. 2015) network, trained on the
clean CIFAR-10 dataset and evaluated on the CIFAR-10-
C dataset. We mainly compare the impact of five different
inputs on the corruption robustness. These inputs including
samples added with Gaussian noise (Gaussian, mean value
0, standard deviation 0.5), adversarial perturbations (adv),
transferred perturbations (trans adv). Training with weakly
augmented samples (aug), and samples with transferred dif-
ferences from weakly augmented samples (trans aug) are
also included. In our supplementary materials, we conduct
an ablation study on the types of augmentation and perturba-
tions. And it further reveals the effectiveness of transferring
difference on alleviating the model’s sensitivity to certain
types of local direction.

Results. Our first experiment verifies the validity of trans-
ferring vicinal differences. Our main findings are as follows.
The first and most important thing is that transferring vic-
inal differences can improve the corruption robustness of,
as shown in Fig. 3. In particular, transferring vicinal differ-
ences from weakly augmented samples can greatly improve
robustness toward common corruptions. Also, the improve-
ment brought by transferring vicinal differences is signif-
icantly greater than the addition of Gaussian noise. Inter-
estingly, we discover that transferring adversarial perturba-

tions improves robustness to noise corruption more effec-
tively than adding Gaussian noise.

Effectiveness of VITA
In this part, we verify the effectiveness of our vicinal infor-
mation fusion framework, that is, adding samples generated
by VITA to the multi-source robust training process (as de-
scribed in ).

Figure 4: Ablation study on vicinal differences in VITA,
demonstrating the necessity of transferred vicinal differ-
ences as input to a translator. We evaluate corruption robust-
ness (error rate, the lower, the better) on CIFAR-10-C with
an AllConvNet architecture. Here, w/o diff is the translator
trained and inferred without transferred differences, and w/
noise is the translator trained and inferred with the addition
of Gaussian noise. Training process is the same setting as
for default robust training process (50% gen + 25 % adv +
25% aug). As seen, a translator trained with Gaussian noise
or without vicinal differences (i.e. merely original data) per-
forms worse than VITA.

CIFAR Training Settings. In the following experiments,
we choose the same network architectures as AugMix
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Noise Blur Weather Digital
Network Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mCE
Standard 23.9 79 80 82 82 90 84 80 86 81 75 65 79 91 77 80 80.6
Patch Uniform 24.5 67 68 70 74 83 81 77 80 74 75 62 77 84 71 71 74.3
AutoAug 22.8 69 68 72 77 83 80 81 79 75 64 56 70 88 57 71 72.7
MaxBlur pool 23.0 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71 73.4
SIN 27.2 69 70 70 77 84 76 82 74 75 69 65 69 80 64 77 73.3
AugMix 22.4 65 66 67 70 80 66 66 75 72 67 58 58 79 69 69 68.4
DeepAug 23.3 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67 60.4
ANT 23.9 39 40 39 68 78 73 77 71 66 68 55 69 79 63 64 63.3
VITA 25.4 40 41 41 47 61 51 59 57 58 55 49 47 69 44 62 52.1

Table 2: Clean error, mean corruption error (mCE) and all types of corruption error rate values for various methods on ImageNet-
C. We compare against other data augmentation methods for improving the corruption robustness. Our proposed VITA hugely
improves corruption robustness and achieves balanced performance toward different corrupted images.

(Hendrycks et al. 2020b), including All Convolutional Net-
work (Springenberg et al. 2015), DenseNet-BC (k = 2, d =
100) (Huang et al. 2017), 40-2 WideResNet (Zagoruyko and
Komodakis 2016) and ResNeXt-29 (32×4) (Xie et al. 2017).
We use stochastic gradient descent with an initial learning
rate of 0.1 and ReduceOnPlateau scheduler. We train all ar-
chitectures over 150 epochs.

CIFAR Results. We perform a comprehensive evaluation
to compare with a total of 7 advanced augmentation meth-
ods, including Cutout (Devries and Taylor 2017), Mixup
(Zhang et al. 2018), CutMix (Yun et al. 2019), AutoAug
(Cubuk et al. 2019), adversarial training (Adv Train) (Carlini
and Wagner 2017), AugMix (Hendrycks et al. 2020b), ME-
ADA (Zhao et al. 2020). Compared to the standard data aug-
mentation baseline (mean of four different architectures),
our approach achieves 19.3% lower mCE as shown in Fig.
1. Compared to AugMix, which is the current state of the
art on CIFAR-10-C and CIFAR-100-C, our method obtains
significant performance improvement under various network
architectures. Specifically, we achieve a 4.4% (CIFAR-10-
C) and 6.4% (CIFAR-100-C) performance improvement in
mCE under the AllConvNet compared with AugMix.

ImageNet Training Settings. We use ResNet-50 as the
backbone of our model trained on ImageNet. The training
scheme follows AugMix; that is, we apply a small learning
rate for the first five epochs to warm up the training and then
apply a decayed learning rate for the remaining epochs. In
addition to AugMix with standard training, we also compare
our method with DeepAug (Hendrycks et al. 2020a), styl-
ized image training (SIN) (Geirhos et al. 2019) and adver-
sarial noise training (ANT) (Michaelis et al. 2019). Stylized
image training refers to the method in which the model is
not only trained on the original dataset but also on stylized
ImageNet samples (Geirhos et al. 2019).

ImageNet Results. We perform a large-scale evaluation
to compare with a total of 7 advanced augmentation meth-
ods, including Patch Uniform (Lopes et al. 2019), AutoAug
(Cubuk et al. 2019), MaxBlur pool (Zhang 2019), SIN
(Geirhos et al. 2019), AugMix (Hendrycks et al. 2020b),
DeepAug (Hendrycks et al. 2020a), ANT (Rusak et al.
2020). Although our method has a slight drop in accu-

racy on clean samples, it achieves 52.1% mCE as shown
in Fig. 2, compared to AugMix with 68.4% and ANT with
63.3%. Moreover, even without Gaussian noise in the train-
ing phase, our method’s performance in terms of noise cor-
ruption is close to ANT’s (adversarial noise training). This
shows the ability of VITA to promote balanced performance
on different corruption types.

Figure 5: Ablation study on the data source in multi-source
robust training reveals the importance of training with sam-
ples from VITA. We evaluate corruption robustness (error
rate, the lower the better) on CIFAR-10-C with an AllCon-
vNet architecture. Here, w/o aug/adv/gen indicate that spe-
cific types of samples lack in our multi-source robust train-
ing. For example, we train with 50% of samples with shuf-
fled perturbations and 50% samples generated by VITA dur-
ing training under the w/o aug setting. Obviously, when ro-
bust training does not include samples generated by VITA,
corruption robustness decreases significantly.

Ablation Study on Vicinal Differences in VITA
Setup. In this part, we investigate the effects of inputs to
the translator on the quality of the generated sample (i.e. the
impact on improving the robustness of corruption). We con-
duct our ablation study on CIFAR-10-C with an AllConvNet
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Defense Natural FGSM PGD-20 C&W∞ PGD-100 AutoAttack
TRADES (β = 1.0) 88.64 56.38 49.14 - - -
FAT for TRADES 89.94 61.00 49.70 49.35 48.35 47.22

VITA for Adv. Training 89.35 68.02 52.33 50.21 50.04 48.38
TRADES (β = 6.0) 84.92 61.06 56.61 54.47 55.47 53.08
FAT for TRADES 86.60 61.97 55.98 54.29 55.34 53.27

VITA for Adv. Training 85.75 67.99 57.63 55.32 56.87 54.35

Table 3: Evaluations (test accuracy) of deep models (WRN-34-10) on the CIFAR-10 dataset. Results of TRADES (β = 1.0
and 6.0) are reported in (Zhang et al. 2019). Results of FAT for TRADES are reported in (Zhang et al. 2020). Our proposed
framework of VITA and multi-source integrated training can also improve the adversarial robustness of the model.

architecture. We add two sets of control experiments: one
with the translator trained and inferred without vicinal dif-
ferences (w/o diff ) and one with Gaussian noise (w/ noise).

Results. As illustrated in Fig. 4, robust training with sam-
ples generated by the translator trained without vicinal dif-
ferences is less robust against corruption, particularly noise
corruption. Although training with samples from a noise-
added translator improves performance against noise cor-
ruption, it remains significantly poorer than VITA on other
types of corruption.

Ablation Study on Data Source in Training
Setup. In our multi-source robust training, we have three
types of samples (Xaug, Xadv, Xgen). This part aims to de-
termine which data source or combination of data sources
most significantly contributes to the enhancement of corrup-
tion robustness and performance on a clean test set (for more
ablation experiments on data sources and dataset size, see
appendix). In Fig. 5, w/o aug (w/o adv/gen are similar) indi-
cates that we only remove augmented samples during train-
ing (i.e. 50% adv + 50% gen). It should be emphasized that
our data source ablation experiment is conducted during the
multi-source robust training stage, and we still use multi-
source samples when training the translator.

Results. Firstly, as can be seen from Fig. 5, the samples
generated by VITA play an important role in improving the
corruption robustness of the model. Without samples gener-
ated from VITA (i.e. w/o gen), the model performs poorly
on various types of corruption. When the model is trained
with samples generated from VITA and one type of vici-
nal samples (i.e. w/o aug or w/o adv), its corruption robust-
ness is better than when training with both types of vicinal
samples (i.e. w/o gen). However, its corruption robustness
is still not as good as when vicinal samples are integrated
from all sources. Besides, we can find that the combination
of samples with shuffled adversarial perturbations and sam-
ples generated by VITA performs best (compared with w/o
adv and w/o gen). This shows the superiority of the weakly
augmented samples we generated compared to the common
weakly augmented samples.

Robustness Towards Adversarial Attack
Adversarial Training Settings. Recent works (Rusak
et al. 2020; Gilmer et al. 2019) substantiate the claim that
increased robustness against regular or universal adversarial

perturbations (Carlini and Wagner 2017; Moosavi-Dezfooli
et al. 2017) does not imply increased robustness against
common corruptions. In this part, we discuss whether our
generated samples from VITA can be integrated into the ex-
isting adversarial training process to improve the adversarial
robustness of the model. All images of CIFAR-10 are nor-
malized into [0, 1]. The adversarial test data are bounded by
l∞ perturbations with ϵtest = 0.031. We use the same set-
tings as the corruption robustness evaluation experiment to
train our image-to-image translation framework. The only
difference is the regularization terms in multi-source ro-
bust training. Here, we use strong adversarial examples via
the regularization term proposed by TRADES (Zhang et al.
2019). Using a regularization term from TRADES (Zhang
et al. 2019) and an early stopping scheme from FAT (Zhang
et al. 2020), we deploy multi-source adversarial training to
verify the effectiveness of samples generated by VITA to-
wards adversarial robustness. The backbone of our network
is Wide ResNet. Models are trained using SGD with 0.9
momenta for 100 epochs, with the initial learning rate of
0.01 divided by ten at epoch 60. Our supplementary materi-
als contain further information about training and evaluating
with additional models.

Adversarial Robustness Results. In Table ??, we can
see that injecting the data generated by our method clearly
improves the model’s adversarial robustness against vari-
ous adversarial attack methods. The usefulness of our sug-
gested framework in strengthening model robustness against
FGSM attack is particularly obvious. Although our VITA
is not specifically designed for defending various adversar-
ial attacks, we can easily increase adversarial robustness by
simply altering the regularization terms.

Conclusion

In this work, we propose a multi-source vicinal transfer aug-
mentation (VITA) method to mitigate performance degrada-
tion caused by off-manifold samples. The proposed VITA
consists of two components: tangent transfer and integration
of multi-source vicinal samples. To the best of our knowl-
edge, our work is the first to reveal the effectiveness of tan-
gents transfer for improving corruption robustness. Experi-
mental results show that our proposed VITA obtains state-
of-the-art performance on the image corruption benchmarks
(CIFAR-10-C, CIFAR-100-C and ImageNet-C).
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