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Abstract

Dynamic Vision Sensor (DVS) can asynchronously output
the events reflecting apparent motion of objects with mi-
crosecond resolution, and shows great application potential
in monitoring and other fields. However, the output event
stream of existing DVS inevitably contains background activ-
ity noise (BA noise) due to dark current and junction leakage
current, which will affect the temporal correlation of objects,
resulting in deteriorated motion estimation performance. Par-
ticularly, the existing filter-based denoising methods cannot
be directly applied to suppress the noise in event stream,
since there is no spatial correlation. To address this issue,
this paper presents a novel progressive framework, in which
a Motion Estimation (ME) module and an Event Denoising
(ED) module are jointly optimized in a mutually reinforced
manner. Specifically, based on the maximum sharpness cri-
terion, ME module divides the input event into several seg-
ments by adaptive clustering in a motion compensating warp
field, and captures the temporal correlation of event stream
according to the clustered motion parameters. Taking tempo-
ral correlation as guidance, ED module calculates the con-
fidence that each event belongs to real activity events, and
transmits it to ME module to update energy function of mo-
tion segmentation for noise suppression. The two steps are
iteratively updated until stable motion segmentation results
are obtained. Extensive experimental results on both synthetic
and real datasets demonstrate the superiority of our proposed
approaches against the State-Of-The-Art (SOTA) methods.

Introduction
The Dynamic Vision Sensors (DVS) are novel bio-inspired
vision sensors that record the intensity changes asyn-
chronously in microsecond resolution and output a series
of positive or negative binary spikes (called events) repre-
senting the relative motion cues between the camera and ob-
jects (Gallego et al. 2020). Benefited to its high-sensitivity
to intensity changes, DVS is well suited for conducting mo-
tion segmentation that requires high temporal resolution,
e.g., high-speed aerial vehicles tracking and detection (Kim,
Leutenegger, and Davison 2016; Vidal et al. 2018).
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(a) The Frame (b) The Events

Figure 1: The noise is unavoidable in the output of DVS, as
shown in the orange and blue box area. Besides, the noise
level is affected by the brightness level, the lower the bright-
ness, the greater the noise level, as shown in the blue box.

Given the events as input, there are mainly two strategies
to perform motion segmentation. One way transforms the
events into intensity frames and then conducts the motion
segmentation on them as in traditional frame-based cameras
(Kepple et al. 2020; Mitrokhin et al. 2019). Another feasi-
ble strategy directly performs the motion segmentation in
event space, which requires firstly clustering all the events
into different groups and then calculating the respective mo-
tions (Stoffregen et al. 2019). However, none of these meth-
ods consider the effect of Background Activity (BA) noise
produced by dark current and junction leakage current even
if there is no change in light intensity (Nozaki and Del-
bruck 2017). The BA noise appears sparser and randomly
distributed, as shown in Fig.1, which will destroy the tem-
poral correlation of real activity events, resulting in the mo-
tion segmentation performance degradation. Worse still, the
BA noise level is coupled with the brightness level due to
the logarithmic compression in the front-end photoreceptor
(Patrick, Posch, and Delbruck 2008). The lower the bright-
ness level is, the higher the BA noise level is, as shown in
the orange and blue box area of Fig.1 (b), which will further
increase the difficulty of motion segmentation.

In practice, one straightforward solution for this problem
is to first filter out BA noise using denoising methods (Kho-
damoradi and Kastner 2018; Feng et al. 2020; Wang et al.
2020) and then perform motion segmentation on remaining
events. However, the events lack spatial correlation due to
the sparsity, so we cannot directly use traditional image de-
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noising methods for event denoising. Besides, the specially
designed event denoising methods mainly utilize the spatial-
temporal correlation on local regions to perform event de-
noising, which cannot capture long-time temporal correla-
tion, which is essential for motion segmentation.

To address this problem, this paper proposes a novel pro-
gressive framework in which a Motion Estimation (ME)
module and an Event Denoising (ED) module are jointly op-
timized to improve the motion segmentation performance.
Specifically, the ME module first performs adaptive event
clustering in a motion compensating warp field under the
constraint of maximum sharpness criterion and then outputs
the temporal correlation by exploring the clustered motion
parameters. The temporal correlation is transmitted to ED
module and serves as guidance to help ED module to per-
ceive the noise distribution and output it as confidence maps,
in which the greater the confidence value, the more likely
the event is a real activity event. The confidence is multi-
plied to the event streams, and re-weighted event streams
are transmitted to the ME module to suppress noise’s in-
fluence on motion estimation. The above two processes are
progressively performed until obtaining stable results, and
each of the preceding processes benefits from the gradually
improved results in the other. Experimental results on both
synthetic and real event sequences demonstrate the superior-
ity of our proposed method against the SOTA methods. The
contributions of this work are three-fold:

• We propose a novel progressive framework, in which a
Motion Estimation (ME) module and an Event Denois-
ing (ED) module are jointly optimized in a mutually re-
inforced manner, leading to more accurate motion seg-
mentation results.

• We devise a ME module and an ED module to estimate
the temporal correlation and perceive noise distribution
respectively and leverage them as constraints to facilitate
the mutual learning process.

• Experimental results on synthetic and real-world event
sequences demonstrate the superiority of our method
over the existing methods.

Related Work
In this section, we briefly review the most related event-
based motion segmentation and denoising methods.

Motion Segmentation. In recent years, event-based
motion segmentation has received great attention, and a
number of methods have been proposed (Vasco et al.
2017; Stoffregen and Kleeman 2017; Stoffregen et al. 2019;
Mitrokhin et al. 2020; Kepple et al. 2020; Glover and Bar-
tolozzi 2017; Mishra et al. 2017; Zhou et al. 2021). Typi-
cally, G. Guillermo et al. (Gallego, Rebecq, and Scaramuzza
2018) proposes a contrast maximization framework to con-
duct motion segmentation by maximizing the contrast of
warped event images. T. Stoffregen et al. (Stoffregen et al.
2019) further extends the contrast maximization mechanism
to multi-object motion estimation problem and outputs seg-
mentation probability. Specifically, the sharpness of com-
pensated event image measured by contrast is maximized
for each motion group and used as a reference to update the

segmentation probability. In (Mitrokhin et al. 2020), a repre-
sentation of events as a 3D graph is proposed to learn scene
motion segmentation by a moving camera. However, since
the above methods do not take background noise in event
stream into account, the performance degrades seriously in
the case of insufficient or changing illumination.

Event Denoising. Due to the influence of dark current
and junction leakage current, the output of the event camera
will inevitably contain enormous noise. To improve the qual-
ity of event stream, a lot of event denoising methods are pro-
posed (Khodamoradi and Kastner 2018; Liu et al. 2015; Del-
bruck 2008; Feng et al. 2020; Baldwin et al. 2020; Wu et al.
2020b,a). H Liu et al. first proposes a spatiotemporal corre-
lation filter to remove the BA noise by utilizing the distribu-
tion difference between BA noise and real activity events.To
improve the effeciency of event denoising, (Khodamoradi
and Kastner 2018) proposes a O(N) event denoising method
that can be directly incorporated into circuits. In (Feng et al.
2020) the influence of hot pixels is further explored for bet-
ter denoising results. R Baldwin et al. (Baldwin et al. 2020)
proposes a CNN-based event denoising method by calculat-
ing the likelihood of generating an event at each pixel within
a short time window. However, the above event denoising
methods mainly utilize temporal correlation within the local
spatial neighborhood and failed to capture long-time event
features, which is essential for motion segmentation.

Proposed Method
Overview of Progressive Framework

Given a packet of noisy events, our goal is to segment
real activity events into independently-moving objects while
suppressing the influence of noise. To this end, we propose
a novel progressive optimization framework by optimizing
the motion estimation and event denoising in a mutually re-
inforced manner. As shown in Fig.2, our proposed progres-
sive framework consists of two modules: Motion Estimation
(ME) module and Event Denoising (ED) module.

Taking event stream as input, the ME module first con-
ducts adaptive clustering by warping the events to a refer-
ence time and maximizing event alignment, i.e., maximiz-
ing the sharpness of motion-compensated images of warped
events (Gallego, Rebecq, and Scaramuzza 2018; Stoffregen
et al. 2019). The motion parameters are estimated based on
the clustering results. After that, the temporal correlation of
event stream is calculated by utilizing the estimated motion
parameters and transmitted to ED module to guide event de-
noising. Taking the temporal correlation map as input, ED
module first maps the correlation value to event confidence,
ranging from 0 to 1. The confidence value represents the
probability of an event belonging to real activity events, and
the greater the confidence value, the greater the possibility
of being a real activity event. Then, the confidence value is
multiplied to the event, which is transmitted to ME module
to update the motion estimation. Each of the preceding two
processes benefits from the gradual improvement results in
the other. We progressively perform the two processes until
obtaining stable results.
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Figure 2: Overview of our proposed progressive motion segmentation framework. Given an event sequence, the motion pa-
rameters θ are optimized in a warp field space under the constraint of maximum sharpness criterion. The motion parameter
represents the trajectory of moving objects, which is utilized to calculate the event temporal correlation. Then, the temporal
correlation is transmitted to event denoising module to guide the event re-weighting. The motion estimation and event denoising
are progressively iterated until obtaining a stable motion segmentation result.

The ME Module
The DVS can record logarithmic intensity changes with mil-
lisecond resolution:

∆L(xk, tk) = L(xk, tk)− L(xk, tk −∆tk) = bkC. (1)

where L(x, t) = logI(x, t). x, C, tk and polarity bk repre-
sent the pixel location, contrast threshold, timestamp of the
event and direction of intensity changes, respectively. The
DVS will output a series of “events” when the change in in-
tensity at pixel xk reaches a threshold C:

E = {ek = (xk, tk, bk)|k = 1, 2...Ne}. (2)

Given a series of events and a reference time (e.g., tref =
0), ME module divides the input events into several seg-
ments by adaptive clustering in a motion compensating warp
field to build several Weighted Images of Warped Events
(WIWE):

WIWE(x) =

Ne∑
k=1

ckjpkjδ(x− x′kj). (3)

Here ckj ∈ [0, 1] represents the confidence of event belong-
ing to real activity event, which will be explained in the fol-
lowing section. pkj = P (ek ∈ `j) represents the probability
of the k-th event belonging to the j-th cluster (or motion),
x′
kj = W(xk, tk;θj) is the warped event location under the

constraint of the j-th warping parameter θj , δ is Dirac delta.

Different from the IWE in (Stoffregen et al. 2019), our pro-
posed WIWE can better suppress the influence of BA noise.
After warping, the events can be represented as:

ek = (xk, tk, bk) 7→ e′k = (x′
k, tref , bk). (4)

Cost Function. To measure the event alignment within
the j-th cluster, we propose a novel sharpness metric and use
it as cost function:

Sharp(WIWEj) =

∑
k Varjk × |IECjk|∑

k |IECjk|
, (5)

where Varjk represents the local variance of the jth image
of warped events at pixel k, which is defined as

Varik =
1

|ω|2
∑
j∈ωk

(WIWEij − µik)2, (6)

where ω is the window size and µik is the local mean around
pixel k. IEC represents the image of events correlation,
which is defined as:

IEC(x) =
N∑

k=1

bkδ(x− x′
k)/(t1 − t0), (7)

where N represents the number of events between t0 and t1,
the event starting time and the event ending time.

The IEC is derived from the optical flow constraint equa-
tion (Horn and Schunck 1981) and working principle of
DVS:

∂L

∂t
(x) = −∇L(x) · v, (8)
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Figure 3: The motion segmentation results output by the models with different iterations. As the number of iterations increases,
the influence of noise on motion segmentation is gradually suppressed.
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Figure 4: The confidence mapping functions.

∂L

∂t
(x) ≈ C

∑N
k=1 bkδ(x− xk)

∆t
, (9)

where v represents the optical flow,N represents the number
of events within ∆t. Based on Eq. (8) and Eq. (9), we can
get the following formulation:∫ t1

t0

∇I · vdt = −C ×
N∑

k=1

bkδ(x− x′
k)/(t1 − t0). (10)

The right side of Eq.(10) is denoted as temporal correlation
(i.e., IEC), which represents the intensity of projected gradi-
ent of scene. Since real activity events are caused by mov-
ing edges (Gallego et al. 2020), they are highly correlated
in time. Different from real activity events, the noise is ran-
domly distributed, thus it has low temporal correlation.

Under the constrained of Eq. (5), we maximize the sum of
sharpness of all clusters to find the optimal motion parame-
ters and event confidence. After that, we update the motion
segmentation results as in (Stoffregen et al. 2019):

pkj =
WIWEj(x

′
k)∑Nl

i=1 WIWEi(x′
k)
, (11)

where Nl is the number of candidate motions.

The ED Module
This module is devised to assign a weight for each event by
utilizing temporal correlation (IEC) output by Motion Esti-
mation (ME) module. Firstly, given IEC as input, ED mod-
ule takes the absolute value of IEC to eliminate the influence

of direction; Secondly, the correlation map is normalized to
the range of [0,1]. Events with smaller weights are more
likely to belong to noise. Finally, the weight is multiplied
by the event and transferred to the ME module to suppress
the influence of noise in motion estimation.

Specifically, the ED Module is devised to assign confi-
dence to each event, representing the probability of an event
belonging to real activity events. Theoretically, if an event
belongs to BA noise, its confidence should be close to zero.
To achieve this, we first take the absolute value of IEC to
discard the influence of the direction of projection:

ECij = |IECj(x
′
i)|. (12)

Then, the correlation is mapped to the range of [0,1]. In
this paper, we compare four kinds of mapping functions, as
shown in Fig.4. We find the Tanh function performs best:

cij = tanh(λECij). (13)

Here λ is the normalizing factor that controls the denoising
level, which is set as the reciprocal of the mean of EC:

λ =
1

Mean(EC)
. (14)

After that, we can obtain a N × Nl confidence map, which
is used to re-weight the events as in Eq. (3). Finally, the re-
weighted events are used as the input of ME module to up-
date motion segmentation results.

Experiments
To demonstrate the superiority of our progressive frame-
work for motion segmentation, both quantitative and qual-
itative evaluations on synthetic and real-world event streams
are conducted. We compare our model with SOTA meth-
ods, including event based motion segmentation method,
EBMS (Stoffregen et al. 2019) and event denoising methods,
Knoise (Khodamoradi and Kastner 2018) and Ynoise (Feng
et al. 2020). For each event denoising method, we first filter
out the noise and then conduct segmentation using EBMS.

Event Dataset and Evaluation Metric
Synthetic DVS Data. The synthetic DVS data are gener-
ated using ESIM (Rebecq, Gehrig, and Scaramuzza 2018)
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(a) EBMS  (b) Knoise+EBMS (c) Ynoise+EBMS (a) EBMS  (b) Knoise+EBMS (c) Ynoise+EBMS  (d) Ours (d) Ours

Figure 5: Comparison of motion segmentation results on four synthetic scenes. Our proposed method maintain the distribution
of original real activity events while suppressing the influence of noise, thereby obtaining better motion segmentation results.

 (a) Noise level 0.10 (b) Noise level 0.15  (c) Noise level 0.20 (d) Noise Level 0.25

Figure 6: Motion segmentation results of our proposed
method on different noise levels conditions.

on simulated scenes, created with blender (Community
2018). Each simulated scene contains three objects with dif-
ferent depths, ranging from 0.5 to 3. To simulate the dis-
tribution of objects in the real environment, we set occlu-
sions between different objects. The camera moves paral-
lel to objects with a speed of 0.4/s. The contrast threshold
is 0.5. Then, we add Gaussian noise as in (Patrick, Posch,
and Delbruck 2008). To thoroughly verify the robustness
of the proposed method, we set five kinds of noise levels
(n ∈ {0.05, 0.10, 0.15, 0.20, 0.25}) for each simulated
scene. In this paper, we create four simulated scenes, and
thus obtaining a total of 20 synthetic event sequences.

Real-world DVS Data. The Extreme Event Dataset
(EED) (Mitrokhin et al. 2018) is a real-world event segmen-
tation benchmark, which contains both event sequences with
light noise level, i.e., “what is background”, and event se-
quences with heavy noise level, i.e., “light variations”. The
EV-IMO dataset (Mitrokhin et al. 2019) is an object-level
motion segmentation dataset aiming at distinguishing each
moving object and estimate its motion parameters. We use
both of them to evaluate the effectiveness of our proposed
method to real-world noisy event sequences.

Evaluation Metric. For synthetic event sequences, we
adopt the widely used Intersection over Union (IoU) (Jac-
card 1912) metric for quantitative evaluation. For sub-set
events with the same motion trajectory, we count the number
of True Positive (TP), False Positive (FP), and False Nega-
tive (FN) events, respectively, and calculate the IoU as:

IoU =
TP

TP + FP + FN
× 100%. (15)

The higher the IoU value, the higher the motion segmen-
tation accuracy. For the scenes with multi-moving objects,

VI MIG MIH Ours
73.03 59.16 72.52 79.52

Table 1: Comparison results with existing loss functions for
DVS (in %). VI, MIG and MIH represent Image Variance,
Magnitude of Image Gradient and Magnitude of Image Hes-
sian (Gallego, Gehrig, and Scaramuzza 2019), respectively.

we calculate the IoU of each object respectively and use the
mean of IoU, denoted as MIoU, to represent the motion seg-
mentation accuracy of the test scene. For the EED dataset,
we use the provided timestamped bounding boxes to cal-
culate the percentage of segmented events lying inside the
bounding box after the warping process, and use it to repre-
sent the motion segmentation accuracy. We also present the
object segmentation success (OSS) rate results proposed by
(Mitrokhin et al. 2018).

Ablation Study

Number of Iterations. To examine the improvements in-
duced by different iterations, we experimentally compare
motion segmentation result with different iterations on syn-
thetic events (n = 0.25). And the results are presented in
Fig.3. Compared with only performing motion estimation,
i.e., iteration is 0, the introduction of event denoising can ef-
fectively improve the accuracy for motion segmentation. As
the number of iterations increases, the effect of noise is grad-
ually suppressed and reaches stability in the seventh itera-
tion. This demonstrates that the progressive iteration mech-
anism between motion estimation and event denoising can
improve each other. In the following sections, the model
with seven iterations is used as our default model.

Cost Function. To demonstrate the effectiveness of
our proposed loss function, we compare it with several
widely used loss functions proposed in (Gallego, Gehrig,
and Scaramuzza 2019). We conduct the experiment on sim-
ulated scenes with noise level (n = 0.25), and MIoU re-
sults are reported in Table.1. It is clear that our proposed
loss function outperforms other loss functions. That is due
to our loss function can better suppress the interference of
noise by utilizing structural information.
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 (c) Knoise+EBMS  (e) Ours (d) Ynoise+EBMS (b) EBMS(a) Scene

Figure 7: Segmentation results on real-world event sequences with light noise level. Orange boxes highlight segmentation
difference between direct segmentation and our method.

NoiseLevel 0.05 0.10 0.15 0.20 0.25
Knoise+EBMS 89.15 86.51 81.92 78.93 38.18
Ynoise+EBMS 84.10 81.66 77.89 71.09 54.11

EBMS 90.82 88.97 87.15 81.53 60.61
Ours 94.63 93.71 92.95 89.99 79.52

Table 2: Comparison results with different methods on five
kinds of noise conditions (in %).

Comparisons on Synthetic DVS Data
Quantitative Results. We report the MIoU results of dif-
ferent methods on five kinds of noise levels, as shown in
Table.2. It is clear that our method achieves the best overall
performances on all noise levels. On low noise level condi-
tions (e.g., n = 0.05, 0.10 ), although the EBMS method can
achieve good motion segmentation results, the accuracy is
still lower than our method. The reason is that EBMS doesn’t
consider the effect of noise. Besides, although Knoise and
Ynoise denoising algorithms can filter out noise, they will
also cause the loss of valid events, resulting in incomplete
motion segmentation. Unlike these methods, our method can
adaptively perceive the noise distribution without damaging
the distribution of real activity events and thus obtaining bet-
ter motion segmentation results. Furthermore, as the noise
level increase, the performance of existing methods drops
significantly, but our method can still hold ideal motion seg-
mentation performance on heavy noise level conditions.

Qualitative Visual Results. We first present the mo-
tion segmentation results on four simulated scenes with
noise level n=0.05, as shown in Fig.5. We can observe that
our method outperforms existing methods greatly. Specifi-
cally, compared with EBMS, not only the events that lie out-
side valid regions are suppressed, but also the erroneously
segmented events are corrected, as shown in scene 2. This is
because in our framework, the progressively updated event
confidence can provide more accurate event correlation. As
is shown in Fig.5 (b-c), large amounts of useful informa-

tion are also filtered out along with event noise by Knoise
or Ynoise. Compared with them, our method can perceive
noise in an adaptive way and thus has better performance.

We also present the motion segmentation results on dif-
ferent noise level conditions, as shown in Fig.6. We can
observe that as the noise level increases, our method can
always effectively suppress the influence of noise on mo-
tion segmentation and obtain complete segmentation results.
This demonstrates that the proposed method can accurately
perceive the noise distribution and maintain robust under dif-
ferent noise levels.

Comparisons on Real-world DVS Data
Quantitative Results. The EED dataset (Mitrokhin et al.
2018) is an event segmentation benchmark which contains
both event sequences generated on normal lighting condi-
tions, e.g., “multiple objects” and “what is background”,
and event sequences generated on low-light lighting condi-
tions, e.g., “fast moving drone” and “lighting variation”.
According to the difference of light intensity, we divided
event sequences in EED into two groups, i.e., low noise
level and high noise level, and reported the results of dif-
ferent methods on these two groups of sequences as shown
in Table.3 and 4.

As shown in Table.3, the accuracy of motion segmenta-
tion on heavy noise conditions is much lower than that in
light noise conditions. In general, the EBMS achieves the
best performance among three comparison methods. How-
ever, the accuracy of EBMS on heavy noise level conditions
is still very low. For example, the accuracy of EBMS on
“fast motion drone” is only 27.17%. This is due to the tem-
poral correlation of real activity events is greatly destroyed.
Different from the existing methods, our proposed method
can effectively improve the motion segmentation accuracy.
For example, our method achieves an accuracy of 53.92% on
“fast moving drone”, which is 26.75% higher than EBMS.
Besides, our method can also improve the motion segmen-
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Heavy Noise Level (HNL) Light Noise Level (LNL)EED Sequence Name (ESN) FMD LV WIB OC MO
Knoise+EBMS 47.22 31.08 69.06 82.41 42.74
Ynoise+EBMS 25.63 34.49 63.99 86.12 41.32

EBMS 27.17 30.95 68.43 69.66 41.63
Ours 53.92 48.33 93.33 83.23 51.11

Table 3: MIoU results with different methods on EED dataset (in %). FMD, LV, WIB, OC and MO represnet the “Fast moving
drone”, “Lighting variations”, “What is background?”, “Occluded sequence”, “Multiple objects scene”, respectively.

(b)EBMS (c)Knoise+EBMS (d)Ynoise+EBMS (e)Ours(a) Scene

Figure 8: Segmentation results on real-world event sequences with heavy noise level. Orange boxes highlight segmentation
difference between direct segmentation and our method.

HNL LNLESN FMD LV WIB OC MO
EMODT 92.78 84.52 89.21 90.83 87.32
EBMS 96.30 80.51 100.00 92.31 96.77
Ours 100.00 90.90 100.00 92.31 100.00

Table 4: OSS results with different methods on EED dataset.
EMODT refers to the method in (Mitrokhin et al. 2018).

tation performance on light noise conditions as shown in
Table.3. This demonstrates the effectiveness of our method
on real-world event sequences, which is consistent with the
conclusion on synthetic event data. Segmentation results as
OSS rates are shown in Table.4. As can be seen, our method
outperforms all existing methods especially on high noise
level conditions, and can even achieve 100% object detec-
tion rate on the FMD, WIB and MO sequences.

Qualitative Visual Results. Then, we visualize motion
segmentation results on light and heavy noise conditions in
EED dataset as shown in Fig.7 and Fig.8. It is clear that
our method can effectively suppress the influence of noise
as well as hold the original structures of moving objects.
Our method can not only suppress the influence of noise but
also maintain the original effective structures, which demon-
strates the effectiveness of our method for real-world event
sequences. Besides, we also provided the segmentation re-
sults of EVIMO dataset (Mitrokhin et al. 2019) where dif-
ferent colors represent different motions as in Fig.9. As can
be seen, our method preserves most useful structure infor-
mation while at the same time noisy events are eliminated.

(a) EBMS (b) Knoise+EBMS (c) Ynoise+EBMS (d) Ours

Figure 9: Segmentation results on EVIMO event sequence
with heavy noise level. In this sequence a toy car is sliding
down from a slope and the camera is randomly moving.

Conclusion
In this paper, we present a novel progressive framework to
improve the quality of motion segmentation under noisy en-
vironments in a mutually reinforced manner. The proposed
framework consists of a Motion Estimation (ME) module
and an Event Denoising (ED) module which are jointly opti-
mized by maximizing sharpness metric and each module can
benefit from the gradually improved results in the other. The
comprehensive evaluations on both synthetic and real event
sequences demonstrate that our proposed method achieves
superior performance over the SOTA methods.
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