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Abstract

Although point-based networks are demonstrated to be accu-
rate for 3D point cloud modeling, they are still falling be-
hind their voxel-based competitors in 3D detection. We ob-
serve that the prevailing set abstraction design for down-
sampling points may maintain too much unimportant back-
ground information that can affect feature learning for detect-
ing objects. To tackle this issue, we propose a novel set ab-
straction method named Semantics-Augmented Set Abstrac-
tion (SASA). Technically, we first add a binary segmentation
module as the side output to help identify foreground points.
Based on the estimated point-wise foreground scores, we
then propose a semantics-guided point sampling algorithm to
help retain more important foreground points during down-
sampling. In practice, SASA shows to be effective in iden-
tifying valuable points related to foreground objects and im-
proving feature learning for point-based 3D detection. Addi-
tionally, it is an easy-to-plug-in module and able to boost var-
ious point-based detectors, including single-stage and two-
stage ones. Extensive experiments on the popular KITTI and
nuScenes datasets validate the superiority of SASA, lifting
point-based detection models to reach comparable perfor-
mance to state-of-the-art voxel-based methods. Code is avail-
able at https://github.com/blakechen97/SASA.

Introduction
3D object detection has attracted increasing interest from
research communities as it plays an important role in vari-
ous real-world scenarios, including autonomous driving and
robotic systems (Shi et al. 2020a; Yang et al. 2020). This
task aims to identify and localize objects from 3D scenes.
To properly detect objects from 3D space, LiDAR sensors
are widely applied to capture 3D point clouds that represent
the surrounding environments. Comparing to RGB images,
point clouds could provide rich and accurate 3D structure in-
formation, which is vital for precise localization in 3D space.

To exploit the representational power of deep learning
(Zhang and Tao 2020), researchers have designed differ-
ent neural networks to extract 3D features, including voxel-
based ones (Zhou and Tuzel 2018; Yan, Mao, and Li 2018;
Deng et al. 2020) that discretize sparse points into regular
voxel grids and point-based ones (Shi, Wang, and Li 2019;
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Figure 1: Our method reaches top performance (moderate
AP: 82.16%) among both voxel-based and point-based de-
tectors with a high inference speed for the car detection on
the KITTI benchmark (Geiger, Lenz, and Urtasun 2012).

Qi et al. 2019; Yang et al. 2020) that directly perform feature
learning on 3D points. Benefiting from transformation-free
point cloud processing and flexible receptive fields (Shi et al.
2020a), point-based methods have the potential of achiev-
ing compelling performance (Yang et al. 2020). However,
compared with voxel-based detectors that show vast devel-
opment, point-based 3D detection stagnates in recent years
and fails to achieve top performance on related datasets.

By investigating popular point-based methods, we find
that an important problem is that the widely-used set ab-
straction (SA) is inefficient to describe scenes in the context
of detection, especially with the problematic sampling strat-
egy. In particular, the SA layer first selects a subset of input
points as key points and then encodes context representa-
tions from nearby points for each sampled key point. How-
ever, when selecting key points, existing sampling strategies,
which tend to choose distant points to better cover the entire
scene, could make abstracted point sets involve excessive ir-
relevant background points like points on the ground, since
the majority of the 3D space belongs to background espe-
cially in outdoor scenarios (Chen, Zhang, and Tao 2019).
These irrelevant points usually deliver trivial information for
detecting objects and, at the same time, plenty of benefi-
cial foreground points could be inappropriately discarded.
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For example, points on small objects like pedestrians may
be completely neglected. Consequently, the point set given
by SA may fail to provide sufficient foreground informa-
tion or cover many foreground instances, thus the detec-
tion performance could be largely degraded. Although most
point-based detectors (Qi et al. 2018; Yang et al. 2019b; Shi,
Wang, and Li 2019) apply feature propagation (FP) layers
to retrieve the foreground points dropped in the previous SA
stage, these FP layers bring heavy memory usage and high
computational cost (Yang et al. 2020) inevitably.

To solve the issue, we propose a Semantics-Augmented
Set Abstraction (SASA) for point-based 3D detection. By
incorporating point-wise semantic cues, we can help avoid
including too many potentially irrelevant background points
and focus on more informative foreground ones in the SA
stage. Hence, abstracted point sets could then provide more
object-related information for the succeeding box predic-
tion network. To properly incorporate point semantics into
SA, we have made the following two updates to the SA
layer in Pointnet++ (Qi et al. 2017b). Firstly, we add a point
binary segmentation module to identify foreground points
from the input. Then, given point semantic maps, we adopt
a novel sampling algorithm, semantics-guided farthest point
sampling (S-FPS), to choose representative key points for
SA layers. Comparing to the commonly used farthest point
sampling (FPS), our proposed S-FPS gives more preference
to positive points so more points from foreground are kept
through down-sampling. With point-wise segmentation and
advanced sampling strategy, SASA serves as a strong point
feature learning technique for 3D detection.

In practice, our proposed SASA is an easy-to-plug-in
module and can work seamlessly with various point-based
detection frameworks. We have successfully implemented it
in two popular point-based baselines, 3DSSD (Yang et al.
2020) and PointRCNN (Shi, Wang, and Li 2019). Though
they use way different feature learning and box prediction
schemes, SASA delivers consistent improvement. Experi-
mental results (Sec. ) show that SASA can boost the mean
average precision (mAP) by around 2% for the most com-
petitive car class on the KITTI dataset (Geiger, Lenz, and
Urtasun 2012) and show notable improvement on the large-
scale nuScenes dataset (Caesar et al. 2020).

In summary, the contribution of this work is derived from
our novel point set abstraction design with semantics. For
point-based 3D detection, we (a) attach a binary segmen-
tation module to the SA layer to identify valuable points
from foreground and; (b) propose a novel sampling algo-
rithm S-FPS to make abstracted point sets focus on object
areas. Our design is lightweight and can be easily adopted
in manifold point-based detection models. Experimental re-
sults show that our method obtains highly boosted results
on both single-stage and two-stage baselines on the KITTI
(Geiger, Lenz, and Urtasun 2012) and nuScenes (Caesar
et al. 2020) datasets and sets new state-of-the-art for point-
based 3D object detection.

Related Work
3D Object Detection from Point Clouds. According to
the 3D point processing schemes, recent 3D detection mod-

els can be mainly divided into grid-based and point-based
methods. Grid-based methods (Chen et al. 2017; Ku et al.
2018; Song and Xiao 2016; Zhou and Tuzel 2018; Yan,
Mao, and Li 2018; Chen et al. 2019; Lang et al. 2019; He
et al. 2020; Shi et al. 2020b; Deng et al. 2020) firstly trans-
form unordered 3D points into regular 2D pixels or 3D vox-
els where convolutional neural networks (CNN) can be ap-
plied for point cloud modeling. Some methods (Beltrán et al.
2018; Lang et al. 2019) process point clouds from projected
2D views (e.g. bird’s eye view). VoxelNet (Zhou and Tuzel
2018) proposes to model 3D scenes via voxelization and 3D
CNN. SECOND (Yan, Mao, and Li 2018) formulates an ele-
gant 3D feature learning backbone with sparse convolutions
(Liu et al. 2015) and makes a fast and effective one-stage
detector. VoxelRCNN (Deng et al. 2020) proposes a novel
voxel RoI pooling to efficiently aggregate RoI features from
voxels in a Pointnet (Qi et al. 2017b) set abstraction style.

Another stream is point-based detection. Based on the
prevailing point feature learning technique, Pointnet (Qi
et al. 2017a,b), these methods model point clouds from raw
points input. F-Pointnet (Qi et al. 2018) firstly introduces
Pointnet (Qi et al. 2017a,b) to 3D detection for locating ob-
jects from cropped point clouds given by 2D detectors. To
avoid leveraging RGB images, PointRCNN (Shi, Wang, and
Li 2019) proposes a fully point-based detection paradigm,
comprising a point-based region proposal network (RPN) to
generate 3D proposals from point-wise features and a point-
based refinement network to adjust 3D boxes with inter-
nal point features. VoteNet (Qi et al. 2019) replaces point-
based RPN with a lightweight voting scheme and obtains an
anchor-free point-based detector. 3DSSD (Yang et al. 2020)
adopts a more advanced point sampling strategy to safely
remove expensive FP layers without hurting the detection
recall. Based on these popular point-based detection frame-
works, we further explore how to upgrade the fundamental
feature learning phase for boosting point-based detection.

Sampling Algorithms for Set Abstraction. In Pointnet-
based feature learning paradigms (Qi et al. 2017b), SA lay-
ers firstly sample a subset of input points for dimension re-
duction, where most point-based models (Qi et al. 2018; Shi,
Wang, and Li 2019; Qi et al. 2019) adopt the classic farthest
point sampling (FPS) algorithm for key points sampling.
Recent works (Yang et al. 2019a; Lang, Manor, and Avi-
dan 2020; Yang et al. 2020; Nezhadarya et al. 2020) devise
novel sampling algorithms to obtain better point modeling
ability. For the representative point cloud classification task,
(Yang et al. 2019a; Lang, Manor, and Avidan 2020) man-
age to make the sampling process differentiable so it can be
optimized in an end-to-end manner. Besides, some methods
choose to involve additional heuristic information into the
sampling strategy. For example, Nezhadarya et al. (2020)
tends to keep critical points that occupy a large proportion
of channels in final representations. In 3D object detection,
Yang et al. (2020) proposes the Feature-FPS (F-FPS) where
the feature distance between points is also considered to in-
crease the feature diversity of sampled points. In this paper,
we use a more direct heuristic cue, point semantics, to help
SA layers focus on more beneficial points from foreground.
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Figure 2: The structure of our proposed Semantics-Augmented Set Abstraction (SASA) layer. Based on the original SA layer
design, we add a point segmentation module for mapping input point features to binary segmentation masks and upgrade the
point sampling strategy with our semantics-guided point sampling algorithm. Point semantic labels are derived from ground-
truth boxes and all point segmentation modules are optimized with a segmentation loss function in an end-to-end manner.

Semantics-Augmented Set Abstraction
The overall structure of SASA is illustrated in Figure 2.
It comprises three main components: a point segmentation
module, a semantics-guided point sampling layer and a nor-
mal Pointnet++ SA layer.

Given the input point coordinates X and features F, we
first feed the point features to the point segmentation module
to compute the point-wise foreground scores P. Then, we
employ our S-FPS to sample key point set K based on point
coordinates X and foreground scores P. For each point in
the key point set K, we apply the normal Pointnet++ SA
layer (Qi et al. 2017b), including a point grouping operation,
a multi-layer perceptron (MLP) and a max-pooling layer, to
calculate high-level representations for sampled key points.
The output key point coordinates and features are sent to the
succeeding networks for further processing.

Point Segmentation Module
To help the Pointnet build the awareness of local seman-
tics, we embed a lightweight point segmentation module in
SASA. It is a simple 2-layer MLP and classifies input points
into two categories, i.e. foreground and background. Specif-
ically, denoting {f (lk)1 , f

(lk)
2 , . . . , f

(lk)
Nk
} as the lk-dimension

point features fed to the k-th SA layer, the foreground score
p ∈ [0, 1] for each point is calculated as:

pi = σ(Mk(f
(lk)
i )) , (1)

whereMk(·) denotes the point segmentation module within
the k-th SA layer, mapping input point-wise features fi to
foreground scores pi. σ(·) is the sigmoid function.

For training the point segmentation module in each SASA
layer, foreground segmentation labels for points can be nat-
urally derived from box annotations. Similar to (Shi, Wang,
and Li 2019), points inside any one of the ground-truth 3D
bounding boxes are regarded as foreground points and the
others as background ones. The total segmentation loss is
computed with a cross entropy (CE) loss function:

Lseg =
m∑
k=1

λk
Nk
·
Nk∑
i=1

CE(p[k]i , p̂
[k]
i ), (2)

where p[k]i and p̂[k]i denote the predicted foreground score
and the ground-truth segmentation label (1 for points from

foreground and 0 for ones from background) of the i-th point
in the k-th SA layer. Nk and λk are the total number of in-
put points and the segmentation loss weight for the k-th SA
layer. The detailed parameter setting is deferred to Sec. .

Semantics-guided Farthest Point Sampling
Local semantic perception indicates hotspot regions where
objects of interest may exist. Considering the goal of de-
tecting objects, we need to pay more attention to these lo-
cations and sample more points from there. To exploit ob-
tained point semantics in the sampling stage, a straightfor-
ward way could be directly choosing points with top-K fore-
ground scores, but we have observed that this method selects
too many points from easily identified objects, which usu-
ally have much higher foreground scores. The obtained key
point set fails to cover the 3D scene and a great proportion of
ground-truth objects are ignored. Thus, the overall detection
performance is largely hurt.

Hence, we propose a novel point sampling algorithm, i.e.
semantics-guided farthest point sampling (S-FPS), for incor-
porating the global scene awareness of FPS and the local ob-
ject awareness induced by semantic heuristics. Given point-
wise semantics yielded by the previous segmentation mod-
ule as well as point coordinates from input, the process of
our proposed S-FPS is described in Algorithm 1. The main
idea is to select more foreground points by giving prece-
dence to the points with higher foreground scores. Remain-
ing the overall procedure of FPS unchanged, we rectify the
sampling metric, distance to already-sampled points, with
point foreground scores. Specifically, given 3D coordinates
{x1, x2, . . . , xN} and foreground scores {p1, p2, . . . , pN}
of input points, a distance array {d1, d2, . . . , dN} maintains
the shortest distance from i-th point to already selected key
points. In each round of selection, we add the point with
highest semantics-weighted distance d̃i to the key point set
and it is computed as:

d̃i = pγi · di , (3)

where γ is the balance factor controlling the importance of
semantic information. It is worth noticing that S-FPS can re-
duce to vanilla FPS when γ = 0 and can also approximate to
the aforementioned top-K selection if γ becomes extremely
large.
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Algorithm 1: Semantics-guided Farthest Point Sampling Al-
gorithm. N is the number of input points and M is the num-
ber of output points sampled by the algorithm.

Input: coordinates X = {x1, . . . , xN} ∈ RN×3;
foreground scores P = {p1, . . . , pN} ∈ RN

Output: sampled key point set K = {k1, . . . , kM}
1: initialize an empty sampling point set K
2: initialize a distance array d of length N with all +∞
3: initialize a visit array v of length N with all zeros
4: for i = 1 to M do
5: if i = 1 then
6: ki = argmax(P)
7: else
8: D = {pγk · dk|vk = 0}
9: ki = argmax(D)

10: end if
11: add ki to K, vki = 1
12: for j = 1 to N do
13: dj = min(dj , ‖xj − xki‖)
14: end for
15: end for
16: return P

The benefit brought by S-FPS is manifold. Firstly, S-FPS
can retain diverse points from foreground. Incorporated with
semantic weights, positive points are more favored than neg-
ative ones during sampling, since they usually have a larger
semantics-guided distance. Secondly, S-FPS enhances the
density of key points in high-score areas, where foreground
objects exist with higher probabilities. This could help pro-
vide more beneficial information for the follow-up box pre-
diction network. Also, S-FPS is less sensitive to distant out-
liers (Yang et al. 2019a). Though outliers usually have a
larger distance to other points, their low semantic weights
prevent the sampling algorithm from choosing them. Lastly,
S-FPS is permutation-irrelevant (Yang et al. 2019a). That is,
previous sampling algorithms like FPS and F-FPS do not
have a certain start point so different input orders may lead
to different sampling outcomes. While S-FPS always starts
with the point with the highest semantic score and all suc-
ceeding selections are unique. Sampling results given by S-
FPS could remain stable under different permutations.

Implementation Details
This section provides details about how we incorporate
semantics-augmented set abstraction in 3DSSD (Yang et al.
2020) and PointRCNN (Shi, Wang, and Li 2019).

3DSSD. 3DSSD (Yang et al. 2020) is a lightweight single-
stage detector. The backbone is composed of three Pointnet
SA layers only and the box prediction network is similar
to VoteNet (Qi et al. 2019), where a vote point indicating
the corresponding object centroid is firstly computed from
candidate point features and then points in the vicinity of
each vote point are aggregated to estimate the 3D box.

3DSSD introduces a fusion sampling strategy, where two
different point sampling algorithms (namely FPS and F-
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Figure 3: Illustration of 3DSSD and PointRCNN backbones
with semantics-augmented set abstraction.

FPS) are adopted together to sample half of the total key
points of the layer respectively. As shown in Figure 3a, we
replace the F-FPS part with our proposed S-FPS and leave
all other sampling settings (e.g. the number of sampled key
points) unchanged. Key points sampled by S-FPS are re-
garded as candidate points to further generate corresponding
vote points and those sampled by FPS are context points for
providing context information for nearby votes. We start im-
plementing our SASA from the level 2 SA layer as the raw
point input to level 1 cannot produce meaningful semantics.
The segmentation loss weights for the level 2 and level 3 SA
are set to 0.01 and 0.1.

PointRCNN. PointRCNN (Shi, Wang, and Li 2019) is a
representative two-stage detection paradigm with Pointnet.
The model comprises a Pointnet++ (Qi et al. 2017b) back-
bone, a point-based RPN and a refinement network. The
backbone consists of four SA layers followed by four FP
layers. Extracted point features are then fed to the RPN to
filter background points and generate 3D regions of inter-
est (RoIs) for foreground points. Finally, the refinement net-
work gathers point features within each RoI and gives the
final box estimation.

PointRCNN uses vanilla FPS to sample all key points in
all SA layers. As shown in Figure 3b, we apply SASA from
level 2 to level 4 and keep the backbone structure, including
FP layers, the same as the original implementation. The seg-
mentation loss weights for the three levels are set to 0.001,
0.01 and 0.1.

224



Experiments
Datasets
We validate our semantics-augmented set abstraction on the
popular KITTI dataset (Geiger, Lenz, and Urtasun 2012) and
the more challenging nuScenes dataset (Caesar et al. 2020).

KITTI Dataset. KITTI dataset (Geiger, Lenz, and Urta-
sun 2012) is a prevailing benchmark for 3D object detection
in transportation scenarios. It contains 7, 481 LiDAR point
clouds as well as finely calibrated 3D bounding boxes for
training, and 7, 518 samples for testing.

Following the commonly applied setting (Zhou and Tuzel
2018), we divide all training examples into the train split
(3, 712 samples) and the val split (3, 769 samples) and all
experimental models are trained on the train split and tested
on the val split. For the submission to KITTI test server, we
follow the training protocol mentioned in (Shi et al. 2020a),
where 80% labeled point cloud images are used for training
and the rest 20% images are used for validation.

nuScenes Dataset. nuScenes Dataset (Caesar et al. 2020)
is a more challenging dataset for autonomous driving with
380k LiDAR sweeps from 1, 000 scenes. It is annotated with
up to 10 object categories, including 3D bounding boxes,
object velocity and attributes, from the full 360◦ detection
range (compared with 90◦ for KITTI). The evaluation met-
rics used in nuScenes dataset incorporate the commonly
used mean average precision (mAP) and a novel nuScenes
detection score (NDS), which reflects the overall prediction
quality in multiple domains (i.e. detection, tracking and at-
tribute estimation).

Experiment Settings
We have two different baselines, 3DSSD (Yang et al. 2020)
and PointRCNN (Shi, Wang, and Li 2019), for evaluation.
Our experimental models are all built with the OpenPCDet
(Team 2020) toolbox, including our reproduced 3DSSD and
the official implementation of PointRCNN.

3DSSD. We train the 3DSSD model with ADAM opti-
mizer for 80 epochs. We apply the one-cycle learning rate
schedule (Smith and Topin 2019) with the peak learning rate
at 0.01. The total batch size is set to 16, equally distributed
on four NVIDIA V100 GPUs.

During the training phase, manifold data augmentation
strategies are employed to avoid over-fitting. We use the GT-
AUG (Yan, Mao, and Li 2018; Shi, Wang, and Li 2019)
to paste some instances along with their internal LiDAR
points from other scenes to the current training scene. We
also utilize global scene augmentations, such as random flip-
ping along the X-axis, random scaling with a factor from
[0.9, 1.1] and random rotation with an angle from [−π4 ,

π
4 ],

as well as box-wise augmentations including random per-
mutation, scaling and rotation. The augmentation settings
are kept identical to (Yang et al. 2020). In the inference
stage, we use 3D non-maximum-suppression (NMS) with
the threshold of 0.01 to remove redundant predictions.

When transferring to the nuScenes dataset, we follow the
official suggestion (Caesar et al. 2020) that combining Li-
DAR points from the current key frame as well as previous

Method Car (IoU=0.7) Time
Easy Mod. Hard (ms)

RGB + LiDAR
MV3D (Chen et al. 2017) 74.97 63.63 54.00 360
F-PointNet (Qi et al. 2018) 82.19 69.79 60.59 170

AVOD-FPN (Ku et al. 2018) 83.07 71.76 65.73 100
3D-CVF (Yoo et al. 2020) 89.20 80.05 73.11 75

LiDAR only
Voxel-based:

VoxelNet (Zhou et al. 2018) 77.47 65.11 57.73 220
SECOND (Yan et al. 2018) 83.34 72.55 65.82 50

PointPillars (Lang et al. 2019) 82.58 74.31 68.99 23.6
TANet (Liu et al. 2020) 83.81 75.38 67.66 34.5

Part-A2 (Shi et al. 2020b) 87.81 78.49 73.51 80*
SA-SSD (He et al. 2020) 88.75 79.79 74.16 40.1

CIA-SSD (Zheng et al. 2020) 89.59 80.28 72.87 30.8
Voxel-RCNN (Deng et al. 2020) 90.90 81.62 77.06 25.2

PV-based:
F-PointRCNN (Chen et al. 2019) 84.28 75.73 67.39 65

PV-RCNN (Shi et al. 2020a) 90.25 81.43 76.82 80*
Point-based:

PointRCNN (Shi et al. 2019) 86.96 75.64 70.70 100*
STD (Yang et al. 2019b) 87.95 79.71 75.09 80

3DSSD (Yang et al. 2020) 88.36 79.57 74.55 38
Ours (3DSSD + SASA) 88.76 82.16 77.16 36

Table 1: Results on the car class of KITTI test set. Our model
is 3DSSD with SASA. The evaluation metric is the AP cal-
culated on 40 recall points. Inference time data with “*” is
pasted from the official KITTI benchmark website.

frames in 0.5s, which involves up to 400k LiDAR points in
a single training sample. Then, we reduce the quantity of in-
put LiDAR points in the same way as (Yang et al. 2020). In
particular, we voxelize the point cloud from the key frame
as well as that from piled previous frames with the voxel
size of (0.1m, 0.1m, 0.1m), then randomly select 16, 384
and 49, 152 voxels from the key frame and previous frames
and randomly choose one internal LiDAR point from each
selected voxel. The total 65, 536 LiDAR points with 3D co-
ordinates, reflectance and timestamp (Caesar et al. 2020) are
fed to the model. The training phase runs for 20 epochs with
a batch size of 16 on eight NVIDIA V100 GPUs.

PointRCNN. According to the model configuration pro-
vided in OpenPCDet (Team 2020), we train PointRCNN
(Shi, Wang, and Li 2019) in an end-to-end manner with
ADAM optimizer for 80 epochs. The learning rate schedule
is one-cycle schedule (Smith and Topin 2019) with a peak
learning rate at 0.01. We follow the original data augmen-
tation strategies and inference settings. Please refer to (Shi,
Wang, and Li 2019) and (Team 2020) for more details.

Main Results
Our main evaluation compared with state-of-the-art models
is performed on the 3DSSD model with our proposed SASA.

Results on KITTI Dataset. Table 1 shows the 3D ob-
ject detection performance on the KITTI test set evaluated
on the official server. For the most competitive car detec-
tion race track, our method surpasses all existing point-
based detectors by a great margin and obtains comparable
results to state-of-the-art voxel-based models. Comparing
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Method NDS mAP Car Truck Bus Trailer C.V. Ped. Motor Bicycle T.C. Barrier
PointPillars (Lang et al. 2019) 46.8 28.2 75.5 31.6 44.9 23.7 4.0 49.6 14.6 0.4 8.0 30.0

3D-CVF (Yoo et al. 2020) 49.8 42.2 79.7 37.9 55.0 36.3 - 71.3 37.2 - 40.8 47.1
3DSSD (Yang et al. 2020) 56.4 42.6 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
Ours (3DSSD + SASA) 61.0 45.0 76.8 45.0 66.2 36.5 16.1 69.1 39.6 16.9 29.9 53.6

Table 2: Results on the nuScenes validation set. Our model is 3DSSD with SASA. Evaluation metrics include NDS, mAP and
AP on 10 classes. Abbreviations: Pedestrian (Ped.), Traffic cone (T.C.), Construction vehicle (C.V.).

Sampling Method PS FS Easy Mod. Hard Recall
FPS 7 7 91.08 82.75 79.93 92.10
FPS 3 7 91.17 82.83 81.97 92.01
F-FPS 7 3 91.54 83.46 82.18 96.65
S-FPS (γ = 0.1) 3 3 91.53 83.16 81.92 95.79
S-FPS (γ = 1) 3 3 92.19 85.76 83.11 97.65
S-FPS (γ = 10) 3 3 92.17 83.41 80.61 95.02
S-FPS (γ = 100) 3 3 91.72 82.35 78.24 91.19

Table 3: Performance comparison between FPS, F-FPS and
S-FPS with different balance factor settings. “PS” represents
point segmentation modules and “FS” represents the fusion
sampling strategy. Point recall is calculated according to the
256 candidate points that are used to generate votes.

with the baseline model 3DSSD, our method boosts the AP
by 0.40%, 2.59%, 2.61% for the three difficulty levels re-
spectively. It is worth noting that our method acquires signif-
icant improvements on the moderate and hard levels, demon-
strating our proposed semantics-augmented operation can
retain sufficient points from hardly visible instances so as
to make more robust object estimations, which is of great
significance in building safe autonomous driving systems.

Results on nuScenes Dataset. We report the nuScenes de-
tection score (NDS) and the mean average precision (mAP)
as well as the average precision (AP) for the 10 object cate-
gories in Table 2. Our method obtains much higher NDS and
mAP compared with the baseline method 3DSSD (4.6% on
NDS and 2.4% on mAP). We believe our proposed SASA ef-
ficiently chooses plenty of key points from multiple frames
so as to enhance the detection accuracy as well as the track-
ing accuracy. Especially for bicycles that are commonly re-
garded as difficult detection targets, our method still pro-
duces satisfactory results.

Inference Speed. Our model takes around 36ms to pro-
cess a single point cloud sample from KITTI dataset, mea-
sured with OpenPCDet (Team 2020) framework on a V100
GPU. Compared with F-FPS, S-FPS bypasses the time-
consuming calculation of the pairwise feature distance. Es-
pecially when the number of points becomes large, our
strategy avoids quadratic growth of computations and GPU
memory usage for the sampling stage.

Ablation Study
We conduct ablation studies to validate each part of SASA.
All results provided in this section are trained on the KITTI
train split and evaluated on the val split of the car class.

Effects of Semantics-guided Point Sampling. Table 3
compares the detection performance as well as the point
recall, which means that the proportion of GT boxes that
have at least one internal sample point comparing to the to-
tal number of GT boxes (Yang et al. 2020), among different
sampling algorithms, based on the 3DSSD baseline. We only
adjust the point sampling strategy and keep other model set-
tings identical. Results show that our S-FPS outperforms the
F-FPS used in the 3DSSD baseline in all three difficulty lev-
els, especially by up to 2.30% in the moderate level. Also,
candidate points sampled by our method can “hit” 1% more
ground-truth boxes comparing to F-FPS.

Visualization results in Figure 4 also prove our method
effective. Comparing to F-FPS, S-FPS can keep more key
points within a single instance, even for those severely oc-
cluded or tiny objects. Thus, hard examples are more likely
to be detected with our proposed S-FPS sampling algorithm.

Effects of Point Segmentation Layer. The 1st row and
the 2nd row of Table 3 compare the detection performance
with and without point segmentation modules. Stand-alone
segmentation layers show limited effects on the detection
accuracy. The improvement is mainly derived from the point
sampling algorithm.

Effects of Semantics Balance Factor. We also compare
S-FPS with different balance factor γ from the 4th to 7th

row in Table 3. Results indicate that an overly large or small
γ could not appropriately boost the detection accuracy. As
aforementioned, S-FPS will approximate to the top-K selec-
tion on foreground scores if the γ becomes extremely large.
Sampled key points could crowd in a minority of easily iden-
tified instances and fail to cover distant or occluded ones.
When γ = 100, the point recall drops sharply to 91.19%,
even worse than that for vanilla FPS. Also, the box predic-
tion network would encounter the imbalance training prob-
lem as the quantity of internal sampled points shows a great
disparity among objects. Therefore, the overall detection
performance is largely hurt. From the other aspect, S-FPS
will degrade to vanilla FPS if γ is close to 0, making limited
improvement. A suitable γ could significantly improve the
performance. When γ = 1, the three difficulty levels reach
satisfactory performance simultaneously.

Compatibility Study
Our SASA is an easy-to-plug-in design and can serve multi-
ple point-based detection paradigms. As SASA already ob-
tains notable enhancement on the one-stage model 3DSSD
(as shown in Table 4), here we test its compatibility in a two-
stage point-based detector, PointRCNN.
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Figure 4: Visualizing detection results between F-FPS (top) and S-FPS (bottom) on the KITTI val split. Predicted and ground-
truth boxes are labeled in green and red, respectively. Pink points mark the key points sampled in the last SA layer and white
arrows indicate some false negative examples for F-FPS but successfully recovered by our method.

Method Easy Mod. Hard mAP
3DSSD 91.54 83.46 82.18 85.73

3DSSD + SASA 92.19 85.76 83.11 87.02
SASA Improvement +0.65 +2.30 +0.93 +1.29

PointRCNN 91.57 82.24 80.45 84.75
PointRCNN + SASA 92.13 82.64 82.40 85.72
SASA Improvement +0.56 +0.40 +1.95 +0.97

Table 4: Effects of SASA in different point-based detection
paradigms evaluated on the car class of KITTI val split.

Results on KITTI Dataset. Although the PointRCNN
backbone contains four FP layers to recover points discarded
in the SA stage, there is no concern about the point re-
call rate. Nevertheless, SASA can still enhance the detection
performance. As shown in Table 4, it improves the detec-
tion performance for all difficulty levels, especially with a
1.95% AP leading in the hard mode. Harder instances hold
fewer LiDAR points, which are usually difficult to survive in
deep SA layers with vanilla FPS. Their features could not be
deeply and sufficiently encoded by the Pointnet backbone,
while S-FPS can better focus on these point samples and
their feature quality is largely improved.

Quantitative Analysis. Here we further analyze the qual-
ity of produced point features by comparing the accuracy of
3D proposals generated by RPN. From Figure 5, point fea-
tures extracted by our semantics-augmented backbone can
yield more accurate 3D RoIs compared to the original one.
When we use the top-100 RoIs as PointRCNN suggests, our
method can cover nearly 2% more ground-truth boxes at the
IoU level of 0.7. This gap widens to almost 10% when the
number of RoIs becomes lower, demonstrating the superior-
ity of the our feature learning scheme with SASA.
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Figure 5: Proposal recall rate under different numbers of
RoIs with and without SASA on PointRCNN.

Conclusion
In this paper, we present the Semantics-Augmented Set Ab-
straction (SASA) for point-based 3D detection. Our main
concept is to incorporate semantic information into the
Pointnet SA stage for guiding the point-based backbone to
better model potential objects. Experiments on the KITTI
and nuScenes datasets indicate that our strategy can help ac-
cess a higher point recall during the point down-sampling
stage so as to obtain a better detection outcome for mani-
fold point-based detectors. Our proposed method provides a
promising direction for point-based detection. Not only can
it be implemented in Pointnet-based models, but it is also
compatible with, for example, transformer-based networks
and graph neural networks for feature reduction. We hope
this study could inspire the research community to further
break the sampling bottleneck in point-based detection.
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