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Abstract
The recently proposed DEtection TRansformer (DETR)
achieves promising performance for end-to-end object detec-
tion. However, it has relatively lower detection performance
on small objects and suffers from slow convergence. This pa-
per observed that DETR performs surprisingly well even on
small objects when measuring Average Precision (AP) at de-
creased Intersection-over-Union (IoU) thresholds. Motivated
by this observation, we propose a simple way to improve
DETR by refining the coarse features and predicted locations.
Specifically, we propose a novel Coarse-to-Fine (CF) decoder
layer constituted of a coarse layer and a carefully designed
fine layer. Within each CF decoder layer, the extracted local
information (region of interest feature) is introduced into the
flow of global context information from the coarse layer to
refine and enrich the object query features via the fine layer.
In the fine layer, the multi-scale information can be fully
explored and exploited via the Adaptive Scale Fusion(ASF)
module and Local Cross-Attention (LCA) module. The multi-
scale information can also be enhanced by another proposed
Transformer Enhanced FPN (TEF) module to further improve
the performance. With our proposed framework (named CF-
DETR), the localization accuracy of objects (especially for
small objects) can be largely improved. As a byproduct, the
slow convergence issue of DETR can also be addressed. The
effectiveness of CF-DETR is validated via extensive exper-
iments on the coco benchmark. CF-DETR achieves state-of-
the-art performance among end-to-end detectors, e.g., achiev-
ing 47.8 AP using ResNet-50 with 36 epochs in the standard
3x training schedule.

Introduction
Object detection which involves classification and localiza-
tion subtasks is a fundamental problem in the field of Com-
puter Vision (Zou et al. 2019; Zaidi et al. 2021). The mod-
ern object detectors (Liu et al. 2016; Redmon et al. 2016; Lin
et al. 2020; Ren et al. 2017; He et al. 2017; Zhang et al. 2020)
rely on post-processing (e.g., ”non-maximum suppression”
or NMS) to get robust detection results. Recently, DEtec-
tion TRansformer (DETR) (Carion et al. 2020) has been pro-
posed as a fully end-to-end object detector, which does not
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rely on NMS. It utilizes object queries that contain proper-
ties of objects (feature, shape, location, etc.), to query from
a global context through a cross-attention mechanism. Al-
though DETR achieves promising performance for end-to-
end object detection, it is thought to have relatively poor de-
tection performance on small objects and suffers from slow
convergence.

However, when observing the COCO-style metric Aver-
age Precision (AP) at different IOU thresholds, we get more
insights into DETR’s behavior. As illustrated in Figure 1,
we calculated the AP results on COCO validation set at var-
ious IoU thresholds for three methods: DETR-R50, Sparse
R-CNN-R50, and Faster R-CNN-R101. Note that the cho-
sen three methods have similar performances measured with
conventional AP50:95. Figure 1(a) shows that DETR per-
forms much better than other methods when measuring AP
with low IoU thresholds. Figure 1(b) further shows AP re-
sults on small objects at different IoU thresholds. While
DETR indeed performs poorly at high IoU thresholds (e.g.
from 0.5 to 0.9), it performs surprisingly well (even better
than Sparse R-CNN-R50 with FPN) when measuring AP
with low IoU thresholds (e.g. from 0.1 to 0.4). We also sum-
marize the AP scores at different ranges in Table 1, which
clearly shows the superiority of DETR when measuring AP
in the low IOU thresholds range. This phenomenon implies
the strong perception ability of DETR even for small ob-
jects, and the reason why DETR is poorer on small objects is
that the bounding box location is not accurate enough com-
pared with Region of Interests (RoI) feature based methods
(like Faster R-CNN and Sparse R-CNN). And that the key
to improving DETR is simply to refine the coarse predicted
locations by introducing local information

Several methods have been proposed to explore local in-
formation in DETR architecture (Zhu et al. 2020; Sun et al.
2020; Gao et al. 2021). Deformable DETR (Zhu et al. 2020)
leverages multi-scale deformable encoder and sparse sam-
pling for local information rather than global information.
Instead of using the cross-attention module, TSP (Sun et al.
2020) combines R-CNN- or FCOS-based (Tian et al. 2019)
methods with the Transformer encoder to focus on local in-
formation. Different from the above methods, this paper pro-
poses a new way to fully utilize the global context informa-
tion and local information in a coarse-to-fine manner. Al-
though this approach is not proposed directly to solve the
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(a) AP results at IoU threshold of 0.1 to 0.5.
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(b) AP results on small objects at IoU threshold of 0.1 to 0.9.

Figure 1: AP results on COCO validation set at various IoU thresholds: DETR-R50 vs. Sparse R-CNN-R50 vs. Faster R-CNN-
R101. (a) shows AP results at IoU thresholds from 0.1 to 0.5. DETR performs much better than other methods under this setting.
Note that all the compared methods have similar performance measured with conventional AP50:95. (b) shows AP results on
small objects at IoU thresholds from 0.1 to 0.9. While DETR indeed performs poorly at the IoU threshold from 0.5 to 0.9, it
performs well when measuring AP with low IoU thresholds from 0.1 to 0.4.

Method AP APs AP′ AP′s
Faster R-CNN-R101 42.5 24.2 66.7 47.5
DETR-R50 42.0 20.5 68.3 49.4
Sparse R-CNN-R50 42.8 26.7 67.2 49.1

Table 1: Average Precision at different ranges of IoU thresh-
olds for all objects and small objects. AP and AP’ denotes
AP50:95 and AP10:50 for all objects separately. APs and AP′s
denotes AP50:95 and AP10:50 for small objects separately.

low convergence problem, we believe that it is in line with
mitigating this issue. As the predicted boxes are refined to be
more accurate, the label-assignment matching process will
be more stable, therefore the training process will be more
efficient (Sun et al. 2020).

In this paper, a Coarse-to-Fine DEtection TRansformer
(CF-DETR) is proposed (see Figure 2), which retains the
non-local encoder-decoder architecture of DETR to inherit
its strong perception ability. In CF-DETR, a coarse-to-fine
(CF) decoder layer constituted of a coarse layer and a fine
layer, is designed to improve the localization accuracies.
With the CF structure, the local multi-scale ROI informa-
tion can be extracted and introduced into the flow of global
attention information from the coarse layer to gradually en-
rich the object query features via the fine layer. In the fine
layer, we propose a novel Adaptive Scale Fusion (ASF)
module, which leverages object query features to adaptively
fuse ROI features from different scales. The fused ROI fea-
tures are further feed into a novel Local Cross-Attention
(LCA) module to refine and enrich object query features via
the cross-attention interactions. Compared with the vanilla
cross-attention, the proposed attention module is more con-
ducive to obtaining the local and spatial information of ob-
jects and its convergence is faster. In addition, the origi-
nal multi-scale features can be enhanced by a novel Trans-

former Enhanced FPN (TEF) module, which transfers
the high-level non-local information extracted from Trans-
former Encoder to the low-level features in an FPN manner,
bringing further performance improvement of CF-DETR.

The main contributions of this paper are as follows:

• A new end-to-end object detection transformer frame-
work named CF-DETR is proposed. In CF-DETR, a
novel CF decoder layer is proposed to refine and enrich
the features in a coarse-to-fine manner by fusing local
and global information.
• In the fine layer, an ASF module and an LCA module

are proposed to fully explore and exploit the multi-scale
ROI information. In addition, a TEF module is proposed
to enhance the original multi-scale information, further
improving the performance of CF-DETR.
• The effectiveness of CF-DETR is demonstrated by the

experimental results on the challenging COCO dataset
(Lin et al. 2014). CF-DETR achieves state-of-the-art per-
formance among end-to-end detectors, e.g., achieving
47.8 AP using ResNet-50 with 36 epochs in the standard
3x training schedule.

Related Work
One-stage and Two-stage Object Detectors
Previous deep learning-based object detectors can be di-
vided into two categories: one-stage and two-stage detec-
tors. Typically, one-stage detectors such as SSD (Liu et al.
2016), YOLO (Redmon et al. 2016), and RetinaNet (Lin
et al. 2020), directly conduct object classification and loca-
tion on pixels of the output feature map. While two-stage
detectors (Ren et al. 2017; He et al. 2017) first generate RoI
based on sliding-window locations. And then they leverage
the RoI align layer to extract fine-grained features and refine
proposals.
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Figure 2: The overview of CF-DETR. CF-DETR follows the main encoder-decoder architecture of DETR, with a novel TEF
module and novel CF decoder layers. The features from Transformer Encoder and TEF module are taken as inputs by CF
decoder layers. Each CF decoder layer contains a coarse layer and a fine layer. The coarse layer follows the traditional Trans-
former decoder layer structure. The fine layer leverages multi-scale RoI features to refine coarse boxes from the coarse layer
via the ASF and LCA modules. The object query features are passed through N cascaded CF decoder layers.

However, all these methods require hand-crafted princi-
ples (e.g., intersection-over-union (IoU) threshold) when as-
signing predictions to ground-truth object boxes. Moreover,
the leverage of NMS post-processing (Bodla et al. 2017) to
remove redundant boxes is also necessary for the inference
phase.

End-to-End Detectors
Recently, DEtection TRansformer (DETR) (Carion et al.
2020) has been proposed as end-to-end object detection,
which utilizes Hungarian matching for label assignment. Al-
though it achieves comparable performance with Faster R-
CNN, it has relatively lower detection performance on small
objects and suffers from slow convergence.

To accelerate the convergence speed of DETR, De-
formable DETR (Zhu et al. 2020) proposes a deformable
encoder, which extracts multi-scale features naturally via
learnable sparse sampling. Based on Deformable DETR, Ef-
ficient DETR (Yao et al. 2021) proposes that a great ini-
tialization of object queries could help the model converge.
With a dense-to-sparse structure, Efficient DETR builds a
simple yet efficient end-to-end detector with one decoder
layer. TSP (Sun et al. 2020) points out that the cross-
attention mechanism is the main reason for the slow conver-
gence of DETR, such that they propose to combine R-CNN-
or FCOS-based (Tian et al. 2019) methods with Transformer
encoders . While Deformable DETR and TSP explored lo-
cal information, SMCA (Gao et al. 2021) explored global
information with a self-attention and co-attention mecha-
nism to accelerate convergence speed. On the other hand,
UP-DETR (Dai et al. 2020) proposes a novel self-supervised
DETR. It enhances convergence speed and performance by
pre-training the Transformer encoder in DETR.

Recently, Sparse R-CNN (Sun et al. 2021) proposes a

fully sparse structure with an end-to-end set prediction loss.
It utilizes a dynamic interaction module to extract fine object
features from local RoI features.

Different from the above methods, this paper proposes a
coarse-to-fine manner to fully utilize both the global con-
text information and local ROI information. It efficiently im-
proves the model localization capability and only requires
standard 3x training strategies to converge.

Method
The central idea of the CF-DETR framework is to refine
coarse bounding boxes. With this framework, both the global
context information and local ROI information can be uti-
lized efficiently, and the multi-scale information can be en-
hanced and fully explored. Therefore the predicted boxes
based on the refined and enriched object query features will
be more accurate.

Overview

Figure 2 shows the pipeline of CF-DETR. It follows the
main encoder-decoder architecture of DETR. Different from
DETR, CF-DETR has a novel TEF module and novel CF
decoder layers. The features from Transformer Encoder and
TEF module are taken as inputs by CF Decoder layers to
complete the following detection tasks. Each CF decoder
layer contains a coarse layer and a fine layer. The coarse
layer extracts object-related features from global context
semantics. And the fine layer leverages multi-scale RoI
features to refine coarse boxes from the coarse layer via
the ASF and LCA modules. The object query features are
passed through the cascaded CF decoder layers and are op-
timized together with network parameters.
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Figure 3: illustrates the details of the Adaptive Scale Fusion
module.

Modules
TEF Module. With the Transformer Encoder in DETR or
CF-DETR, the non-local foreground features E5 can be ex-
tracted from the backbone features C5. We expect this non-
local foreground information could be transmitted to low-
level features to help improve the perception of objects. In-
spired by FPN (Lin et al. 2017a), we propose a TEF module
that works the same way as FPN, except that the features
C5 is replaced by the output features E5 from Transformer
Encoder. Specifically, we first add the upsampled E5 to C4,
then output the fused feature map E4 after 3 × 3 convolu-
tion. A new set of feature maps {Ei}Li=1 can be obtained
by repeating the above operation between adjacent feature
maps, where L is a hyper-parameter. With the TEF module,
the multi-scale information can be enhanced, also the gap
between the features from the coarse layer and ROIs might
be alleviated, which may benefit the cross-attention opera-
tions in the fine layer.

Coarse-to-Fine Decoder Layer. As illustrated in Figure
2, the CF decoder layers are cascaded and they take as inputs
a set of learnable object query features and the features from
the TEF module to detect objects. Each CF decoder layer
contains a coarse layer and a fine layer:

(1) Coarse Layer: The coarse layer follows the tradi-
tional Transformer decoder layer structure, which could be
also replaced with other variants (Gao et al. 2021; Meng
et al. 2021) of DETR, extracting object-related features from
global context semantics. The self-attention module first em-
beds the relationships between N object queries as O ∈
RN×c. Given a flattened feature map x ∈ RHW×c from
Transformer encoder, each object oi ∈ R1×c focuses on
different regions of feature map x to sense an potential ob-
ject via the cross-attention module. Note that learnable ob-
ject query features are directly fed as queries into the cross-
attention module rather than treated as positional encoding
in DETR. FFN layers and other layer norms are added into
the pipeline similar to the Transformer setting. The bound-
ing box predictions are computed by a 3-layer multilayer
perception (MLP) with ReLU activation functions. Classifi-
cation is performed by a single linear layer.

(2) Fine Layer: The goal of the fine layer is to further
refine the coarse bounding boxes. It takes as inputs the ob-
ject query features which contain global context information
output from the previous coarse layer and the local ROI fea-
tures extracted from the TEF module. Object query features
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Figure 4: illustrates the details of the Local Cross-Attention
module.

containing global information are sufficient for the classifi-
cation task (Wang et al. 2020). However, more precise local
information (e.g. the shape and boundaries of objects) and
multi-scale information are necessary for accurate location
predictions, especially for small objects. Thus the fine layer
further explores and exploits the multi-scale local ROI fea-
tures via the proposed ASF and LCA modules.

ASF Module. Given one object query oi ∈ R1×c and
related coarse box bi from the coarse layer, the fine layer
utilizes the ROI align (He et al. 2017) operation to ex-
tract corresponding multi-scale features {f li ∈ Rc×h×w}Ll=1
from the TEF module, where L is the number of levels.
The conventional method uses the heuristic method to se-
lect a specific layer of ROI feature based on the size of bi.
This method does not fully explore high-level semantic in-
formation. Other works (Liu et al. 2018; Guo et al. 2020)
have attempted to aggregate ROI features to improve perfor-
mance, but these methods do not consider the corresponding
instance feature oi. Here, we propose an ASF module to fuse
multi-scale features adaptively according to specific object
query features (see Figure 3). Specifically, all ROI features
in different scales are concatenated in channel dimensions
fi ∈ RLc×h×w. The convolution weights with spatial size
k×k are generated according to the object query feature via
a fully connected layer. Then the ASF leverages depth-wise
convolution to activate informative channels for the object.
Finally, a 1 × 1 convolution is applied for reducing dimen-
sion from Lc to c.

LCA Module. The fused multi-scale ROI information
from ASF is exploited by object queries in the LCA mod-
ule, which basically implements a Local Cross-Attention
(LCA) between the object query features and the fused ROI
features. As spatial information is very important for pre-
cisely locating an object, different from the non-local multi-
attention mechanism, LCA enables object queries focusing
on local information when interacting with the fused ROI
features. Specifically, for a given pair of object query fea-
ture oi ∈ R1×c and fused feature f ′i ∈ Rc×h×w, LCA first
employs a depth-wise 3× 3 convolution over f ′i for extract-
ing contextual information from local neighbor points, pro-
ducing the key: fKi = DWConv3×3(f

′
i), f

K
i ∈ Rc×h×w.

The query is defined as the expand of object query feature:
oQi ∈ Rc×h×w, with the same shape as fKi . Inspired by CoT-
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Method Feature Epochs AP AP50 AP75 APs APm APl FPS
Faster R-CNN-R50 FPN 36 40.2 61.0 43.8 24.2 43.5 52.0 26
Cascade R-CNN-R50 FPN 36 44.3 62.2 48.0 26.6 47.7 57.7 19
DETR-R50 (Carion et al. 2020) Encoder 500 42.0 62.4 44.2 20.5 45.8 61.1 28
DETR-DC5-R50 (Carion et al. 2020) Encoder 500 43.3 63.1 45.9 22.5 47.3 61.1 12
Deform DETR*-R50 (Zhu et al. 2020) DeformEncoder 50 43.8 62.6 47.7 26.4 47.1 58.0 19
Deform DETR*++-R50 (Zhu et al. 2020) DeformEncoder 50 46.2 65.2 50.0 28.8 49.2 61.9 19
Sparse R-CNN-R50 (Sun et al. 2021) FPN 36 42.8 61.2 45.7 26.7 44.6 57.6 23
Sparse R-CNN*-R50 (Sun et al. 2021) FPN 36 45.0 63.4 48.2 26.9 47.2 59.5 22
TSP-R-CNN-R50 (Sun et al. 2020) FPN 36 43.8 63.3 48.3 28.6 46.9 55.7 11
SMCA*-R50 (Gao et al. 2021) Encoder 108 45.6 65.6 49.1 25.9 49.3 62.6 10
CF-DETR-R50 TEF 36 46.5 65.2 50.5 28.4 49.3 61.8 18
CF-DETR*-R50 TEF 36 47.8 66.5 52.4 31.2 50.6 62.8 16
Faster R-CNN-R101 FPN 36 42.0 62.5 45.9 25.2 45.6 54.6 20
DETR-R101 (Carion et al. 2020) Encoder 500 43.5 63.8 46.4 21.9 48.0 61.8 20
DETR-DC5-R101 (Carion et al. 2020) Encoder 500 44.9 64.7 47.7 26.4 47.1 58.0 10
Sparse R-CNN-R101 (Sun et al. 2021) FPN 36 44.1 62.1 47.2 26.1 46.3 59.7 19
Sparse R-CNN*-R101 (Sun et al. 2021) FPN 36 46.4 64.6 49.5 28.3 48.3 61.6 18
TSP-R-CNN-R101 (Sun et al. 2020) FPN 36 44.8 63.8 49.2 29.0 47.9 57.1 9
SMCA*-R101 (Gao et al. 2021) Encoder 50 44.4 65.2 48.0 24.3 48.5 61.0 -
CF-DETR-R101 TEF 36 47.2 65.9 51.1 29.0 50.2 63.4 16
CF-DETR*-R101 TEF 36 49.0 68.1 53.4 31.4 52.2 64.3 14

Table 2: Evaluation results of related methods on COCO 2017 val set. The results of other methods are from Detectron2 and
their released papers. Note that ”*” indicates that there are 300 object queries in training. Deform DETR*++ means Deformable
DETR with the two-stage trick. A single NVIDIA Tesla V100 GPU is used to measure the inference time.

Net (Li et al. 2021), the attention map is calculated as follow:

Ai = (oQi , f
K
i )W1W2, (1)

where W1 ∈ R2c×2c/r and W2 ∈ R2c/r×(c∗k′∗k′) are pa-
rameters of 1×1 convolution kernels, and r is the dimension
scaling factor. When we do attention aggregation, vectors
within each k′ size of value matrix are weighted together,
which is shown as follows:

fOi (h′, w′) =
k′∑

u=1

k′∑
v=1

Ai,u,v,h′,w′ � fVi (h′, w′)u,v, (2)

where fVi ∈ Rc×h×w is projected from fused feature f ′i
via 1 × 1 convolution. And fVi (h′, w′)u,v means the neigh-
bor point (u, v) of point (h′, w′) on the value matrix fVi .
Ai, u, v, h′, w′ is the corresponding attention vector on at-
tention map Ai. Here � means the Hadamard product. In
the end, fOi is flattened to the shape 1 × (c ∗ h ∗ w) and
its dimension is reduced to 1× c through one FC layer. The
refine and enriched object query features are then taken as
inputs by a 3-layer MLP with ReLU activation functions to
predict locations.

Iterative Structure. The prediction of the bounding
boxes is in an iterative structure. Specifically, within first
CF decoder layer, the fine layer refines the bounding boxes
based on the outputs (the normalized center coordinates,
heights and widths of the boxes for a given image) of the
coarse layer. Also, the CF decoder layers are cascaded to
further improve the performance. The refined object query
features from the last fine layer will be sent to the next coarse

layer. The new coarse layer also refines the boxes based on
the output of the previous fine layer (Cai and Vasconcelos
2018).

Loss. The proposed CF-DETR aligns set prediction loss
with DETR. Note that, as the fine layer only predicts bound-
ing boxes, the predicted class logits from the coarse layer
are used when calculating the matching cost. After label as-
signment, the total detection loss can be written as follows:

Ldet = λcls · Lcls + λL1
· Lc

L1
+ λL1

· Lf
L1

λgiou · Lc
giou + λgiou · Lf

giou,
(3)

where Lcls is focal loss (Lin et al. 2017b) for coarse lay-
ers classifications. Lc

L1
and Lf

L1
are L1 losses of predicted

bounding boxes for coarse and fine layers seperately. Lc
giou

and Lf
giou are generalized IoU losses for coarse and fine lay-

ers seperately . λcls, λL1
and λgiou are trade-off hyperpram-

eters for each loss.

Experiments
Dataset and Evaluation Metrics
MS COCO (Lin et al. 2014) instance detection dataset is
utilized to evaluate detectors. Where all models are trained
on the COCO train2017 set with 118k images and evalu-
ated on the val2017 set with 5k images. The performances
on COCO 2017 test-dev set are also reported. Following the
common practice, AP on the coco val2017 set is used as the
main metric. To verify whether CF-DETR mitigates the de-
fects of the DETR, we also focus on APs with small objects
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Method Backbone TTA AP AP50 AP75 APs APm APl

TSP-R-CNN (Sun et al. 2020) ResNet-101+DCN 47.4 66.7 51.9 29.0 49.7 59.1
Sparse R-CNN (Sun et al. 2021) ResNeXt-101+DCN X 51.5 71.1 57.1 34.2 53.4 64.1
Deformable DETR (Zhu et al. 2020) ResNeXt-101+DCN X 52.3 71.9 58.1 34.4 54.4 65.6
CF-DETR ResNet-50 48.1 67.2 52.5 29.5 50.0 61.3
CF-DETR ResNet-101 49.3 68.5 53.8 29.9 51.6 63.1
CF-DETR ResNeXt-101 49.8 69.0 54.4 31.0 52.2 63.0
CF-DETR ResNeXt-101+DCN 50.7 69.9 55.4 30.7 53.2 65.4
CF-DETR ResNeXt-101+DCN X 53.0 72.6 58.8 35.1 54.9 65.9

Table 3: Comparison of CF-DETR with state-of-the-art end-to-end detectors on COCO 2017 test-dev set. Note that, Sparse
R-CNN, Deformable DETR, and CF-DETR, are trained with 300 object queries. ”TTA” indicates test-time augmentations.

and APm for medium objects. The convergence speed is also
concerned.

Implementation Details
Transformer Enhanced FPN. We utilize ResNet-50 and
ResNet-101 (He et al. 2016) as backbones, which are pre-
trained on ImageNet (Deng et al. 2009). Where feature maps
{C2, C3, C4, C5} from ResNet are feed to TEF module to
extracted pyramid-like feature maps {E2, E3, E4, E5}. The
channel size of feature maps is 256. The dimension of the
learnable object query feature is also 256. The Transformer
encoder (a 6-layer encoder of width 256 with 8 attention
heads, 2048 FFN) is the same with DETR.

CF Decoder Layers. The number of CF decoder layers is
set to 6 by default. The settings of coarse layers are the same
as the Transformer decoder in DETR. In the fine layer, The
shape of RoI feature maps is 256 × 7 × 7. The spatial size
k in the ASF module is set to 3. And the dimension scaling
factor r and the local attention size k′ in the LCA is set to 4
and 3 respectively. The default number of object queries is
100.

Training Details. The AdamW (Loshchilov and Hutter
2019) optimizer with weight decay 1e-4 is adopted in the
training process. CF-DETR is trained on 8 NVIDIA Tesla
V100 GPUs, and the batch size is 16 in total. We follow the
default 3× training schedule of Detectron2 and the initial
learning rate is set to 1 × 10−4. Data augmentations and
trade-off hyperparameters in detection loss are the same with
DETR.

Main Result
We compared CF-DETR with well-established detectors,
such as Faster R-CNN (Ren et al. 2017), Cascade R-CNN
(Cai and Vasconcelos 2018), as well as the most related end-
to-end detectors: DETR (Carion et al. 2020), Deformable
DETR (Zhu et al. 2020), Sparse R-CNN (Sun et al. 2021),
TSP-R-CNN (Sun et al. 2020).

Table 2 shows that our proposed CF-DETR outperforms
all the other competitors. For instance, as an end-to-end
detector, CF-DETR*-R50 performs much better than the
two-stage detector Cascade R-CNN-R50 measuring with AP
(47.8 AP vs. 44.3 AP). Compared with Sparse R-CNN*,
a simple and efficient end-to-end method, our proposed
method exhibits much higher AP scores (47.8 AP vs. 45.0

Coarse Fine AP AP50 AP75 APs APm APl

X 30.0 54.2 29.2 10.6 32.0 49.4
X 39.9 56.9 42.9 24.0 41.6 54.7

X X 46.5 65.2 50.5 28.4 49.3 61.8

Table 4: Ablation studies on the coarse and fine layers in CF
decoder layers.

TEF ASF LCA AP AP50 AP75 APs APm APl

42.3 61.7 45.5 26.1 44.8 56.9
X 43.8 63.5 47.4 26.5 46.6 58.8

X 44.2 63.1 48.2 27.8 47.2 59.1
X 43.4 62.6 47.0 26.8 46.3 57.6

X X 44.8 63.6 48.8 27.3 47.7 59.9
X X 44.7 64.1 48.7 28.1 47.7 59.5

X X 44.6 63.4 48.4 28.0 47.2 59.8
X X X 46.5 65.2 50.5 28.4 49.3 61.8

Table 5: Ablation studies on the contributions of each mod-
ule (TEF, ASF, and LCA) in the proposed CF-DETR.

AP with R50; 49.0 AP vs. 46.4 AP with R101). Com-
pared with other SOTA DETR-like detectors: CF-DETR*-
R50 with 36 epochs performs even better than Deformable
DETR*++-R50 with 50 epochs (47.8 AP vs. 46.2 AP).

CF-DETR also shows a significant advantage on small ob-
ject detections. For instance, CF-DETR*-R50 improves the
SOTA APs from 28.8 (Deformable DETR) to 31.2. This il-
lustrates the benefits of merging global context information
with local information in CF-DETR. Note that, the advanced
operations (e.g. deformable convolutions) in DETR variants
(Meng et al. 2021; Yao et al. 2021) can also be adopted in
this framework by replacing coarse layers to further improve
the performance. We leave it in future works.

Table 3 compares the proposed method with other SOTA
end-to-end methods on COCO 2017 test-dev set. With
ResNet-101 and ResNeXt-101 (Xie et al. 2017), the pro-
posed method achieves 49.3 AP and 49.8 AP, respectively.
By using ResNeXt-101 with DCN (Zhu et al. 2019), the per-
formance further improves to 50.7 AP, and 53.0 AP with
test-time augmentations.

190



L AP AP50 AP75 APs APm APl FPS
1 35.8 52.1 38.4 19.0 37.9 47.9 26
2 43.4 61.3 46.9 25.4 45.9 59.0 24
4 46.1 64.7 50.1 28.5 48.8 61.2 21
6 46.5 65.2 50.5 28.4 49.3 61.8 18
12 45.7 64.6 49.8 28.2 48.3 60.7 13

Table 6: The AP scores and FPS of CF-DETR (with R50
backone and 100 object queries) for different numbers of
CF decoder layers.

Ablation Studies
Analysis of Coarse-to-Fine Structure. In this section, We
further analyze the effects of the key components (coarse
layer and fine layer) in the CF decoder layer. To this end, the
performances of CF-DETR with different implementations
of CF decoder layer (with coarse layer only, with fine layer
only, and with both of them) are compared (see Table 4).

Specifically, the CF decoder layers implemented with
only coarse layer almost degenerate to the Transformer de-
coder layer in the original DETR. The only difference lies
in that the predicted bounding boxes at each layer are inde-
pendent in the original DETR, while we instead utilize an
iterative structure in CF-DETR, where the predictions of the
current layer are based on the predicted bounding boxes of
the previous layer. For the CF decoder layer implemented
with the fine layer only, a classification head is added, as
the vanilla fine layer only predicts bounding boxes in the
default design. For fair comparisons, both of them are com-
pared with default CF decoder layers (with both coarse and
fine layers) under the same feature extractor setting.

As shown in Table 4, measured with AP, the fine layer
performs better (39.9 AP vs. 30.0 AP), which indicates that
the fine layer is more promising at accurate localization.
Combing both coarse and fine layers, the CF decoder layer
achieves 16.5 AP and 5.6 AP score improvements com-
pared with only coarse layer and only fine layer respectively
(46.5 AP vs. 30.0 AP, 46.5 AP vs. 39.9 AP). This validates
the effectiveness of the CF decoder layer designed with the
coarse-to-fine structure.

Influences of Different Modules of CF-DETR. In this
part, we further analyze the contributions of proposed mod-
ules (TEF, ASF, LCA) in CF-DETR (see Table 5). We first
build a baseline model following the CF-DETR framework
by replacing TEF with conventional FPN, replacing ASF
with conventional heuristic layer selection method, and re-
placing LAC with a simple single FC layer. Then, we add the
above modules one by one to see their contributions more
clearly.

The baseline again demonstrates the advantage of the
coarse-to-fine structure of CF-DETR, which achieved better
performance than DETR-R50 (42.3 AP vs. 42.0 AP). Com-
pared with baseline, TEF (+1.5 AP), ASF(+ 1.9 AP), and
LCA (+1.1 AP) modules all bring improvements. Among
them, the ASF contributes the most. Combining any two
modules, lead to further improvements (+2.4 AP on aver-
age). And the complete CF-DETR (combining all the mod-
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Figure 5: The convergence curves of CF-DETR (with differ-
ent training settings) and DETR-R50. The CF-DETR mod-
els were trained with a standard 3x schedule. DETR-R50
was trained with 500 epochs.

ules together) performs the best (+ 4.2 AP). Note that, the
proposed modules not only improve small object detection
but also improve the detection significantly for medium ob-
jects and large objects.

Numbers of CF Decoder Layers. In this section, we
study the effect of the different decoder layers on the per-
formances. As illustrated in Table 6, with only two decoder
layers, CF-DETR can achieve competitive performance as
DETR-DC-R50 (43.3 AP) and TSP R-CNN-R50 (43.8 AP).
As the number of layers increases, the performance of CF-
DETR generally improves accordingly, but the inference
speed becomes slower. However, the performance decreased
with 12 decoder layers. we infer that more data and iterations
may be required for models with 12 decoder layers.

Analysis of Convergence. Another gain that the proposed
framework brings is the fast convergence. Figure 5 compares
the convergence curves of CF-DETR (with different train-
ing settings) with that of DETR. The possible reasons for
faster convergence are as follows: (1) Due to the integra-
tion of global and local information via CF decoder layers,
the object query features are refined and enriched. This fa-
cilitates the sparseness of the attention weight matrix in the
cross-attention layer. (2) As illustrated in Figure 5, we find
that the iterative structure also leads to fast convergence, as
the proper cascade layers the better convergence speed we
can observe.

Conclusion
This paper proposes a new end-to-end object detection trans-
former framework named CF-DETR. In CF-DETR, a novel
CF decoder layer is proposed to refine predictions and en-
rich the features in a coarse-to-fine manner. To fuse local and
global information efficiently, an ASF module and an LCA
module are proposed to fully explore and exploit the multi-
scale ROI information. In addition, the multi-scale features
are further enhanced by a proposed TEF module. We hope
the work of this paper could inspire more insights for im-
proving DETR-like detectors.
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