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Abstract

We proposed a Prior Gradient Mask Guided Pruning-Aware
Fine-Tuning (PGMPF) framework to accelerate deep Con-
volutional Neural Networks (CNNs). In detail, the proposed
PGMPF selectively suppresses the gradient of those ”unim-
portant” parameters via a prior gradient mask generated by
the pruning criterion during fine-tuning. PGMPF has three
charming characteristics over previous works: (1) Pruning-
aware network fine-tuning. A typical pruning pipeline con-
sists of training, pruning and fine-tuning, which are relatively
independent, while PGMPF utilizes a variant of the pruning
mask as a prior gradient mask to guide fine-tuning, without
complicated pruning criteria. (2) An excellent tradeoff be-
tween large model capacity during fine-tuning and stable con-
vergence speed to obtain the final compact model. Previous
works preserve more training information of pruned parame-
ters during fine-tuning to pursue better performance, which
would incur catastrophic non-convergence of the pruned
model for relatively large pruning rates, while our PGMPF
greatly stabilizes the fine-tuning phase by gradually con-
straining the learning rate of those ”unimportant” parame-
ters. (3) Channel-wise random dropout of the prior gradient
mask to impose some gradient noise to fine-tuning to fur-
ther improve the robustness of final compact model. Exper-
imental results on three image classification benchmarks CI-
FAR10/100 and ILSVRC-2012 demonstrate the effectiveness
of our method for various CNN architectures, datasets and
pruning rates. Notably, on ILSVRC-2012, PGMPF reduces
53.5% FLOPs on ResNet-50 with only 0.90% top-1 accuracy
drop and 0.52% top-5 accuracy drop, which has advanced the
state-of-the-art with negligible extra computational cost.

Introduction
Despite the superior performance of deep Convolutional
Neural Networks in various tasks, e.g., image classifi-
cation (He et al. 2016; Xu et al. 2021), object detec-
tion (Bochkovskiy, Wang, and Liao 2020), image re-
trieval (Hu et al. 2020), semantic segmentation (He et al.
2017), the deployment of CNNs to resource-limited mobile
devices have posed great challenges. Network pruning is a
powerful method to compress the model with little perfor-
mance loss, which can be divided into two categories: weight
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pruning and filter pruning based on the granularity (Zhu and
Gupta 2018; Liu et al. 2019c; Frankle and Carbin 2019).
Weight pruning methods remove unimportant connections
or weights in the network, inducing unstructured sparsity in
filters, thus requiring specialized libraries for real accelera-
tion. In contrast, filter pruning structurally remove unimpor-
tant filters, capable of compressing both the model size and
the computational burden. Hence we focus on filter pruning.

A three-step filter pruning pipeline consists of: training a
network, evaluating the importance of every filter to gener-
ate a pruning mask to mask out unimportant filters and then
fine-tuning the pruned network to compensate for the per-
formance degradation. The pruning and fine-tuning phases
could be iteratively used to greedily compress the model.

These phases are relatively independent as the pruning
operation is non-differentiable, while our Prior Gradient
Mask Guided Pruning-Aware Fine-Tuning (PGMPF) uti-
lizes a modified version of the pruning mask generated by
the pruning stage as a prior gradient mask to guide fine-
tuning, as shown in Figure 1. Previous Soft Filter Pruning
(SFP) based methods, e.g., Asymptotic Soft Filter Pruning
(ASFP) and Asymptotic SofteR Filter Pruning (ASRFP) (He
et al. 2018, 2019a; Cai et al. 2021b), also allow pruned filters
to update their parameters to maintain a large model capacity
during fine-tuning to pursue better performance, shown in
Figure 1(b), where weight decay mask is a modified version
of the Boolean pruning mask to smoothly soften the pruning
operation in order to maintain more training information in-
side those filters chosen to be pruned. However, these meth-
ods confronted with catastrophic non-convergence of the
pruned model for relatively large pruning rates. The ”catas-
trophic non-convergence of the pruned model for large prun-
ing rates” means that the Test Accuracy Drop before and
after pruning would be very huge, where 0 denotes no ev-
ident accuracy drops incurred by pruning. Note that soft
pruning based methods allow all filters to unconstrainedly
update the parameter during fine-tuning, ignoring the uneven
importance of filters.

Unlike Hard Filter Pruning (HFP) that disables the up-
date of pruned filters, gradually reducing the model capac-
ity or SFP based methods that encounter catastrophic non-
convergence of the pruned model, our PGMPF allows the
update of pruned filters via a prior gradient mask generated
by the pruning criterion, striking an excellent tradeoff be-
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Figure 1: Comparison of three kinds of pruning pipelines.
Our PGMPF devises a prior gradient mask generated by
the Boolean pruning mask at the pruning stage to guide the
next fine-tuning stage, making the fine-tuning stage to be
pruning-aware. Weight decay mask, proposed in Asymptotic
SofteR Filter Pruning (ASRFP), is a variant of the Boolean
pruning mask to soften the pruning operation to maintain
training information inside those pruned filters.

tween large model capacity during fine-tuning and stable
convergence speed to obtain the final compact model.

Our contribution points are as follows: (1) We proposed
a novel Prior Gradient Mask Guided Pruning-Aware Fine-
Tuning (PGMPF) method to compress and accelerate deep
models, which provides state-of-the-art performance with-
out complicated handcrafted or learnt pruning criteria. (2)
Our PGMPF greatly stabilizes the fine-tuning phase by grad-
ually constraining the learning rate of those ”unimportant”
parameters, achieving an excellent tradeoff between large
model capacity during fine-tuning and stable convergence
speed to obtain the final compact model. (3) We proposed
channel-wise random dropout of the prior gradient mask to
impose some gradient noise to fine-tuning to further improve
the robustness of final compact model.

Related Works
Prevalent works on compressing and accelerating CNN
models mainly consist of network pruning, knowledge dis-
tillation, model quantization, low-rank approximation and
efficient network module design.

Network pruning focuses on compressing the model with-
out incurring obvious performance loss. Recently, much at-
tention has been paid to filter pruning, since filter pruning is
much friendlier to hardwares, capable of compressing both
the model size and the computational cost. Until now, di-
verse filter pruning methods have been proposed.

Besides, pruning can be categorized into static pruning

and dynamic pruning. Static pruning removes unimportant
filters statically, eventually obtaining a fixed and static com-
pact model invariant to different inputs. In contrast, given a
unique input, dynamic pruning uses channel-wise or spatial-
wise attention modules to adaptively predict the importance
of each channel and skip the computation of unimportant
channels and locations, or replace the computation with a
low-precision version (Hua et al. 2019; Gao et al. 2019; Liu
et al. 2020). Even though dynamic pruning surpasses static
pruning by learning instance-level network activation paths,
drawbacks are that the model size is not compressed and
the actual inference speed is hindered by the computational
cost of reindexing the dynamic network structure for each
input (Chen et al. 2019; Liu et al. 2019a).

Pruning Criteria. Existing criteria for evaluating the im-
portance of a filter include ℓ1-norm, ℓ2-norm, weight sim-
ilarity, feature redundancy, scaling factors in Batch Nor-
malization layers, the rank of the feature map, cross-layer
weight dependency and so on (Li et al. 2017; Liu et al.
2017; Ayinde and Zurada 2018; Wang et al. 2019; Lin et al.
2020). Some approaches compare the importance of each
filter layer-wisely, while others compare the importance in
the whole network. A disadvantage of global pruning is that
how to design a global filter importance criterion as magni-
tudes of filters vary from layer to layer. Recently, Channel
Pruning via Multi-Criteria (CPMC) method takes three as-
pects, i.e., cross-layer filter dependency, the parameter num-
bers and FLOPs of each filter into account, and then nor-
malizes these criteria to generate a global multi-criteria im-
portance to measure the importance in a global manner (Yan
et al. 2021). Filter Pruning via Geometric Median (FPGM)
approach prunes filters via Geometric Median, claiming
that the prevalent smaller-norm-less-important criterion de-
mands large deviation of filter norms and near zero norms of
unimportant filters (He et al. 2019b). AutoPruner proposes
to use a channel-wise attention module and a scaled sigmoid
function to gradually scale each channel and find unimpor-
tant filters automatically during training (Luo and Wu 2020),
however, evidently increasing training-time computational
costs and requiring heavy tuning of parameters in the scaled
sigmoid function for each network and dataset.

Inspired by Differentiable Architecture Search
(DARTS) (Liu, Simonyan, and Yang 2019), Learning
Filter Pruning Criteria (LFPC) proposes a Differentiable
Criteria Sampler (DCS) to learn layer-wise importance cri-
teria (He et al. 2020b), which is computationally expensive
and time-consuming. MetaPruning adopts Meta Learning
and evolutionary algorithm for automatic channel pruning,
whose training cost is very expensive (Liu et al. 2019b).
Likewise, EagleEye also relies on evolutionary algorithm
together with adaptive batch normalization to search an
optimal structure (Li et al. 2020). In short, how to design a
pruning criterion is still an open issue.

In contrast, our proposed PGMPF does not rely on com-
plicated handcrafted or learnt pruning criteria. For simplic-
ity, we adopt the simple ℓ2-norm criterion. We utilize a mod-
ified version of the pruning mask generated by the pruning
stage as a prior gradient mask to guide fine-tuning. Unlike
conventional HFP based methods which disable the update
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of pruned filters, gradually reducing the model capacity, our
proposed PGMPF allows the update of pruned filters via a
prior gradient mask generated by the pruning criterion, bal-
ancing well between large search space during fine-tuning
and stable convergence speed to obtain the pruned model.

Gradually Hard Filter Pruning (GHFP) (Cai et al. 2021a)
alleviates the issue of catastrophic non-convergence of the
pruned model via a monotonically increasing parameter to
control the proportion of soft pruning and hard pruning
to balance between performance and convergence speed.
While GHFP still suffers from relatively large pruning rates,
our PGMPF greatly stabilizes the fine-tuning phase by grad-
ually constraining the learning rate of those ”unimportant”
parameters. Moreover, our PGMPF are totally pruning-
aware, meaning that the pruning phase could intimately af-
fect the fine-tuning phase via our prior gradient mask, while
in most previous methods, pruning and fine-tuning are rela-
tively independent, shown in Figure 2.

Low-rank approximation of convolutional filters reduces
model size and computation by decomposing large matri-
ces into small matrices, however, achieving relatively tiny
speedups on small-size convolutional kernels (Jaderberg,
Vedaldi, and Zisserman 2014; Alvarez and Salzmann 2017).
Model quantization quantizes the weights and activations
into fewer bits to reduce model size and computational bud-
gets (Hubara et al. 2016; Han et al. 2020). Efficient network
module design aims at designing more lightweight modules,
e.g., MobileNet, CondConv, ACNet, HCGNet (Howard et al.
2017; Yang et al. 2019; Ding et al. 2019; Yang et al. 2020).
Knowledge distillation (KD) methods define various knowl-
edge, e.g., the activation or attention map (Hinton, Vinyals,
and Dean 2015; Yuan et al. 2020; Yang, An, and Xu 2021),
and then transfer the knowledge from a large teacher model
to a small student model, which could be regarded as a kind
of instance-level label smoothing. Recently, self-supervised
learning (SSL) (Chen et al. 2020; He et al. 2020a; Yang et al.
2021) is defined as one kind of knowledge to improve the
performance (Yin et al. 2020), introducing auxiliary tasks,
e.g., rotation, jigsaw, to push the model to learn more gen-
eralized or task-specific representations. These approaches
can be combined with PGMPF to achieve improvement.

Methods
Formulation
For a network with L convolutional layers, the weight of the
l-th convolutional layer Wl can be denoted by Rn×m×s×s,
where 1 ≤ l ≤ L. In detail, s denotes the kernel size. m
and n are the number of input channels and output channels
respectively. We denote Il and Ol as the input and output
feature maps of the l-th layer. The shape of the input tensor
Il and the output tensor Ol = Wl ∗ Il are m × hl × wl and
n× hl+1 × wl+1 respectively, represented as

Ol,j = Wl,j ∗ Il for 1 ≤ j ≤ n, (1)

where Ol,j ∈ Rhl+1×wl+1 and Wl,j ∈ Rm×s×s denote
the j-th output channel and the j-th filter individually in
the l-th layer. If the filter pruning rate for the l-th layer is
Pl, then n × Pl filters in the l-th layer would be removed.

After pruning, the size of the pruned output tensor Ôl is
n× (1− Pl)× hl+1 × wl+1.

Pruning Mask. During pruning, given the weight tensor
Wl and the pruning rate Pl, we adopt a simple ℓ2-norm fil-
ter importance criterion to generate a Boolean pruning mask
Ml,j . Specifically, Ml,j = 0 if Wl,j is pruned. Otherwise,
Ml,j = 1 means that the filter Wl,j is not pruned.

According to ASRFP, the pruned weights of the l-th layer
are gradually zeroized, given by

Ŵl,j =Wl,j⊙Ml,j+αWl,j⊙(1−Ml,j) for 1 ≤ j ≤ n, (2)

where ⊙ denotes the element-wise multiplication. α is a
monotonically decreasing parameter to control the decay-
ing speed of pruned filters and to better utilize the trained
information of pruned filters. ASRFP exponentially decays
α from 1 towards 0 as the pruning and fine-tuning procedure
goes on.

Prior Gradient Mask Guided Pruning-Aware
Fine-Tuning
In Figure 2, the prior gradient mask categorizes filters into
important ones and unimportant ones, based on the ℓ2-norm
of each filter. The closer a filter gets to the center of con-
centric circles, the less important the filter is. The weight
decay mask at the pruning stage would push unimportant
filters towards the center via a monotonically decreasing
parameter α. During fine-tuning, Both unconstrained fine-
tuning (UFT) and PGMPF calculate the gradient as normal,
and the aimed direction of gradient update is denoted by
solid arrow. UFT just moves each filter to the aimed posi-
tion, treating each filter as equally important during fine-
tuning, which would incur catastrophic non-convergence of
the pruned model for relatively large pruning rates. Our
PGMPF is pruning-aware, gradually scaling down the learn-
ing rate of unimportant filters. Besides, the guidance of a
prior gradient mask obtained in the last pruning stage would
continue for an epoch. After each fine-tuning epoch, the
roles of important and unimportant filters may change,
and a new prior gradient mask can be obtained.

After obtaining the Boolean pruning mask Ml,j , we define
a modified asymptotic variant M̂l,j , named as prior gradient
mask, given by

M̂l,j =Ml,j+β(1−Ml,j) for 1 ≤ j ≤ n, (3)

where β constrains the learning rate of those pruned param-
eters, decreasing from 1 to 0, given by

β(t) = (
tmax − 1− t

tmax − 1
)3 for 0 ≤ t < tmax, (4)

where tmax is the maximal number of pruning and fine-
tuning epochs.

Once we obtain the prior gradient mask M̂ = {M̂l,j |l ∈
[1, L], j ∈ [1, n]}, we adopt it to guide the next fine-tuning
stage. Assume that gt is the normal gradient computed by
regular backpropagation during fine-tuning in the t-th epoch.
We impose our prior gradient mask to constrain the learning
rate of those unimportant parameters determined by the last
pruning stage, and obtain a modified gradient ĝt, given by
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(a) Importance Assignment (b) UFT (c) PGMPF

Figure 2: Comparison of UFT in SFP based methods and our PGMPF. (a) The prior gradient mask categorizes filters into
important ones and unimportant ones, denoted by red solid circles and blue solid triangles respectively. Purple dotted concentric
circles indicate the importance of each filter, measured by the ℓ2-norm of the filter. (b) During fine-tuning, Both UFT and
PGMPF calculate the gradient as normal, and the aimed direction of gradient update is denoted by solid arrow. Then we can
get the new position of each filter, denoted by blue filled triangle or red filled circle. UFT just moves each filter to the aimed
position, ignoring the pruning objective. (c) PGMPF scales down the learning rate of those unimportant filters, denoted by
dashed arrows. PGMPF is pruning-aware, gradually constraining the learning rate of those ”unimportant” parameters.

ĝt= gt⊙M̂ =gt⊙M+β gt⊙(1−M) for 0 ≤ t<tmax, (5)

where M = {Ml,j |l ∈ [1, L], j ∈ [1, n]}.
Then with the current learning rate η, we update the

weight tensor by

W̃ =W−η · ĝt = W − η · M̂ ⊙ gt. (6)

where M̂l,j = 1 for unpruned filters and M̂l,j = β for
pruned filters. In effect, we inject a prior gradient mask
into the learning rate to penalize the update step of those
filters considered as unimportant by the pruning criterion,
while other filters will not be affected. Specifically, previous
SFP based methods can be regarded as a special case when
M̂l,j = 1 for all filters, regardless of the importance mea-
sured by the pruning criterion. Maintaining a large model ca-
pacity during fine-tuning would encounter catastrophic non-
convergence of the pruned model for relatively large prun-
ing rates, while our PGMPF greatly stabilizes the fine-tuning
phase by gradually constraining the learning rate of those
”unimportant” parameters.

Random Dropout of the Prior Gradient Mask. Dur-
ing fine-tuning, evert time before we update parameters,
we adopt channel-wise random dropout of the prior gra-
dient mask to impose some gradient noise to fine-tuning
to further improve the robustness of final compact model.
In detail, we define a random matrix R = {Rl,j |Rl,j ∼
Bernoulli(p), l ∈ [1, L], j ∈ [1, n]}, where we set p = 0.5

for simplicity. Then we multiply Rl,j with M̂l,j to obtain
a random dropout version of prior gradient mask, denoted
by Rl,j ⊙ M̂l,j , where Rl,j is shared within the same filter.
Hence, the modified update rule is given by

W̃ = W − η ·R ⊙ M̂ ⊙ gt. (7)

where M̂ is fixed within a single fine-tuning epoch and R is
fixed within each batch. The Eq.(7) assumes the optimizer
to be SGD (Stochastic Gradient Descent). Yet it can be nat-
urally extended to SGD with Momentum.

We present our PGMPF method in Algorithm 1. By de-
fault, we set α0 = 1 following ASRFP and the probability
of using the prior gradient mask p = 0.5.

Experimental Results
Experimental Settings
We empirically evaluate our PGMPF for VGGNet and
ResNet (Simonyan and Zisserman 2015; He et al.
2016) on three datasets: CIFAR-10/100 and ILSVRC-
2012 (Krizhevsky 2009; RussakovskyOlga et al. 2015). Both
CIFAR-10 and CIFAR-100 consist of 50,000 training im-
ages and 10,000 test images of size 32 × 32 pixels, drawn
from 10 classes and 100 classes respectively. ILSVRC-2012
contains 1.28 million training images and 50k validation im-
ages divided into 1,000 classes.

On CIFAR-10/100, we follow the parameter scheme
and the training configuration in GHFP and CPMC. On
ILSVRC-2012, we follow the parameter setting and the data
augmentation scheme in ASFP. The total number of pruning
and fine-tuning epochs of CIFAR-10/100 and ILSVRC-2012
are 200 and 100 respectively, following the settings of ASFP,
ASRFP and GHFP (He et al. 2019a; Cai et al. 2021b,a).

Models are either pruned from scratch or pruned from pre-
trained models. For pruning pre-trained models, we set the
initial learning rate as one-tenth of the original learning rate.
We compare our methods with other state-of-the-art meth-
ods, e.g., ASFP, ThiNet, AutoPruner, GHFP, CPMC, FPGM,
ASRFP, PARI (Cai et al. 2021c).

Single-Branch Network Pruning
VGG16 on CIFAR-10/100. We compare our PGMPF with
several state-of-the-art structural pruning algorithms. (1)
GAL utilizes generative adversarial learning (GAL) (Lin
et al. 2019) to optimize the network structure. (2) VC-
NNP (Zhao et al. 2019) is a variational Bayesian frame-
work for channel pruning. (3) HRank (Lin et al. 2020) re-
gards the Rank of the feature map as a criterion to eval-
uate the importance of each filter. (4) CPGMI (Lee et al.
2020) uses gradients of mutual information to measure the
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Algorithm 1: PGMPF Algorithm
inputs : training set: X , final pruning rate: Pl, initial decay

rate: α0, the model with parameters
W = {Wi, 0 ≤ i ≤ L}.

output: The pruned model with parameters W ∗ = W tmax

Initialize β(0) = 1, p = 0.5 and pruning rate Pl(0) = 0

Initialize prior gradient mask M̂−1 with all ones
for t = 0, ..., tmax − 1 do

Decrease weight decay rate α based on SRFP
Decrease β with Eq.(4)
Increase pruning rate Pl(t) based on ASFP
for each batch in X do

Draw a random
R = {Rl,j |Rl,j ∼ Bernoulli(p)}

Compute the gradient gt
Update the weight by
W̃ t = W t − η ·R ⊙ M̂ t−1 ⊙ gt

end
Get trained model parameters Ŵ t+1

for l = 1, ..., L do
Compute the ℓ2-norm of each filter
∥Ŵ t+1

l,j ∥2, 1 ≤ j ≤ n

Generate a pruning mask M t
l,j

Obtain the prior gradient mask M̂ t
l,j via Eq.(3)

Select n× Pl filters with minimal ℓ2-norm values
to be softly pruned via α

end
Get the pruned model parameters W t+1 based on
Ŵ t+1

end
Get the pruned model with final parameters W ∗ = W tmax

importance of each filter. (5) CPMC simultaneously consid-
ers cross-layer filter dependency, the parameter numbers and
FLOPs of each filter, and then normalizes these aspects to
get a global multi-criteria importance of each filter.

In contrast, we adopt the simple ℓ2-norm criterion for sim-
plicity. We use a prior gradient mask to guide fine-tuning,
balancing between large search space during fine-tuning and
stable convergence speed to obtain the pruned model. Re-
sults are shown in Table 1 and Table 2, where ”PGMPF-
cfg1” means using a simple pre-defined layer-wise pruning
rate configuration to prune each layer with the same pruning
rate and ”PGMPF-cfg2” means using a layer-wise pruning
rate configuration that gradually increasing the pruning rate
from shallow layers to deep layers. Besides, the ”baseline”
denotes the test accuracy of the unpruned model. In Table 2,
”PGMPF-SFP” means using the constant pruning rate strat-
egy in SFP, while we use the asymptotic pruning rate strat-
egy in ASFP and GHFP by default. Unless specifically clari-
fied, we prune each layer with the same pruning rate for sim-
plicity, which may put our method at a disadvantage. Still,
PGMPF outperforms other methods with a simple pruning
rate configuration ”PGMPF-cfg1”. With better pruning rate
configuration ”PGMPF-cfg2”, our method outperform other
methods by a moderate margin.
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Figure 3: Test accuracies before and after pruning, as well as
the accuracy drop of the pre-trained ResNet-34 on ILSVRC-
2012 during fine-tuning when the pruning rate is 30%.

Multiple-Branch Network Pruning
ResNet on CIFAR-10/100. On ResNet-20/56, We mainly
compare our PGMPF with most related methods, i.e., SFP,
ASFP, ASRFP and GHFP as they also maintain a large
model capacity during fine-tuning and the training costs
are roughly the same. As shown in Table 1 and Table 2,
our PGMPF evidently outperforms other methods. For ex-
ample, when pruning pre-trained ResNet-56 for CIFAR-10,
ASFP, ASRFP and GHFP accelerate ResNet-56 by 72.6%
speedup ratio with 5.13%, 4.31% and 2.31% accuracy drops
respectively, while our PGMPF further narrows the gap to
1.70%. When pruning ResNet-20 from scratch for CIFAR-
100, ASFP, ASRFP and GHFP accelerate ResNet-56 by
29.3% speedup ratio with 1.97%, 2.44% and 2.07% accu-
racy drops respectively, while our PGMPF further reduces
the gap to 1.30%. Our PGMPF greatly stabilizes the fine-
tuning phase by gradually constraining the learning rate of
those ”unimportant” parameters.

ResNet on ILSVRC-2012. For ILSVRC-2012, we evalu-
ate our PGMPF on ResNet-18/34/50 with the same pruning
rate for each layer, following the same settings in SFP, ASFP
and ASRFP. For pruning pre-trained models, we use the of-
ficial pre-trained models provided by the Pytorch library. As
shown in Table 3, PGMPF still outperforms previous meth-
ods, even though the importance criterion and the pruning
rate configuration we use are quite simple, which means that
our PGMPF could greatly relax the need of complicated im-
portance criteria and pruning rate configurations. Moreover,
unlike other methods, e.g. AutoPruner, MetaPruning, we do
not introduce obvious training burdens because we just el-
egantly post-process the learning rate of those unimportant
filters, without extra learnt parameters.

AutoPruner accelerates pre-trained ResNet-50 by 51.2%
speedup ratio with 1.39% top-1 accuracy drops, relying on
an extra channel-wise attention module and a scaled sig-
moid function to find unimportant filters. For pre-trained
ResNet-50, SRFP and FPGM accelerate ResNet-50 by
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Model Alg Pre-trained? Baseline (%) Accu. (%) Accu. Drop (%) FLOPs Pruned FLOPs(%)

VGG16

GAL-0.05 ✓ 93.68 92.03 1.65 1.89E8 39.6
VCNNP ✓ 93.68 93.18 0.50 1.90E8 39.1
HRank ✓ 93.68 92.34 1.34 1.09E8 65.3
CPMC ✓ 93.68 93.40 0.28 1.07E8 66.0

PGMPF-cfg1 ✓ 93.68 93.46 0.22 1.07E8 66.0
PGMPF-cfg2 ✓ 93.68 93.60 0.08 1.07E8 66.0

ResNet-20
ASFP × 92.89 90.57 2.32 2.43E7 54.0

ASRFP × 92.89 90.65 2.24 2.43E7 54.0
GHFP × 92.89 90.82 2.07 2.43E7 54.0

PGMPF × 92.89 91.54 1.35 2.43E7 54.0

ResNet-56

GHFP × 94.85 92.08 2.77 3.43E7 72.6
PGMPF × 94.85 92.81 2.14 3.43E7 72.6
ASFP ✓ 94.85 89.72 5.13 3.43E7 72.6

ASRFP ✓ 94.85 90.54 4.31 3.43E7 72.6
GHFP ✓ 94.85 92.54 2.31 3.43E7 72.6

PGMPF ✓ 94.85 93.15 1.70 3.43E7 72.6

Table 1: Pruning results on CIFAR-10.

Model Alg Pre-trained? Baseline (%) Accu. (%) Accu. Drop (%) FLOPs Pruned FLOPs(%)

VGG16

VCNNP ✓ 73.80 73.33 0.47 2.56E8 18.0
CPGMI ✓ 73.80 73.53 0.27 1.98E8 37.1
CPMC ✓ 73.80 73.01 0.79 1.62E8 48.4
PGMPF ✓ 73.80 73.45 0.35 1.63E8 48.2

PGMPF-SFP ✓ 73.80 73.66 0.14 1.63E8 48.2

ResNet-20

SFP × 68.11 66.23 1.88 2.87E7 29.3
ASFP × 68.92 66.95 1.97 2.87E7 29.3

ASRFP × 68.92 66.48 2.44 2.87E7 29.3
GHFP × 68.92 66.85 2.07 2.87E7 29.3

PGMPF × 68.92 67.62 1.30 2.87E7 29.3

ResNet-56
ASFP × 72.92 69.35 3.57 5.94E7 52.6

ASRFP × 72.92 69.16 3.76 5.94E7 52.6
GHFP × 72.92 69.62 3.30 5.94E7 52.6

PGMPF × 72.92 70.21 2.71 5.94E7 52.6

Table 2: Pruning results on CIFAR-100.

53.5% speedup ratio with 4.04% and 1.32% top-1 accuracy
drops respectively, while our PGMPF further reduces the
gap to 0.90%. Meta-Pruning is more like a neural architec-
ture search (NAS) approach than a pruning method, which
relies on evolutionary algorithm to search an optimal struc-
ture. Consequently, the training-phase computational costs
are extremely heavy. Meta-Pruning accelerates ResNet-50
by 50.0% speedup ratio with 1.20% top-1 accuracy drops,
which is surpassed by our lightweight PGMPF.

Convergence Analysis. We present test accuracies be-
fore and after pruning, as well as the accuracy drop of the
pre-trained ResNet-34 on ILSVRC-2012 during fine-tuning
when the pruning rate is 30% in Figure 3. The Test Accu-
racy Drop is the difference between the Top-1 accuracy be-
fore pruning and the Top-1 accuracy after pruning, where 0
denotes no evident accuracy drops incurred by pruning. Our
PGMPF allows pruned filters to update their parameters dur-
ing fine-tuning, thus maintaining a relatively large model ca-
pacity to obtain better performance before pruning. The test
accuracy drop caused by pruning reaches 15% in the first
half of the training epochs. With our PGMPF, we gradually
constrain the learning rate of those ”unimportant” parame-
ters. Thus, we asymptotically reduce the test accuracy drop
caused by pruning to nearly 0 while still maintaining a rela-
tively large model capacity during fine-tuning.

Ablation Study
We conducted ablation experiments to analyze our PGMPF.

Varying pruning rates. We present test accuracies of
various pruning rates for ResNet-20/56 on CIFAR-10/100
in Fig. 4(a), Fig. 4(b) and Fig. 4(c), where ResNet-20 is
pruned from scratch and ResNet-56 is trained from a pre-
trained model on CIFAR-10. On CIFAR-100, ResNet-56 is
pruned from scratch. As the pruning rate increases, the test
accuracies of our PGMPF decline much steadier than those
of ASFP, ASRFP and GHFP. Our PGMPF surpasses other
methods across various pruning rates on different datasets.

Influence of dropout type of prior gradient mask.
While we use channel-wise random dropout of prior gradi-
ent mask by default, here, we present test accuracies of dif-
ferent dropout types on CIFAR-10, shown in Table 4. Layer-
wise dropout is a simple extension of channel-wise dropout
that all filters in each layer shares the same random variable.
Compared with not using any random dropout, in general,
channel-wise random dropout could further improve the per-
formance of our prior gradient mask.

Influence of weight decay mask. Weight decay mask is
a variant of the Boolean pruning mask to soften the prun-
ing operation to maintain more training information inside
those pruned filters in the early stage of iterative pruning re-
training, controlled by α0. When α0 = 0, the information
of those pruned filters is totally discarded, which is equiva-
lent to normal pruning operation all the time, as in SFP and
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Model Alg Pre-trained? Top-1
Baseline(%)

Top-1
(%)

Top-5
Baseline(%)

Top-5
(%)

Top-1 Accu.
Drop(%)

Top-5 Accu.
Drop(%)

Pruned
FLOPs(%)

ResNet-18
ASFP × 70.23 66.02 89.51 86.92 4.21 2.59 53.5

ASRFP × 70.23 66.35 89.51 87.06 3.88 2.45 53.5
PGMPF × 70.23 66.67 89.51 87.36 3.56 2.15 53.5

ResNet-34

ASFP × 73.27 68.79 91.43 88.95 4.48 2.48 52.7
ASRFP × 73.27 70.42 91.43 89.63 2.85 1.80 52.7
PGMPF × 73.27 70.64 91.43 89.87 2.63 1.56 52.7
ASRFP ✓ 73.27 69.82 91.43 89.51 3.45 1.92 52.7
PGMPF ✓ 73.27 71.59 91.43 90.45 1.68 0.98 52.7

ResNet-50

ThiNet ✓ 72.88 72.04 91.14 90.67 0.84 0.47 36.7
SFP ✓ 76.15 62.14 92.87 84.60 14.01 8.27 41.8

PARI ✓ 76.15 75.08 92.87 92.49 1.07 0.38 42.2
Meta-Pruning - 76.60 75.40 - - 1.20 - 50.0

SRFP ✓ 76.13 72.09 92.86 90.75 4.04 2.11 53.5
AutoPruner ✓ 76.15 74.76 92.87 92.15 1.39 0.72 51.2

FPGM ✓ 76.15 74.83 92.87 92.32 1.32 0.55 53.5
PGMPF ✓ 76.01 75.11 92.93 92.41 0.90 0.52 53.5

Table 3: Pruning results on ImageNet.
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Figure 4: Pruning results of ResNet-20/56 on CIFAR-10/100 among ASFP/ASRFP/GHFP/PGMPF with diverse pruning rates.

ASFP. While we use α0 = 1 as SRFP and ASRFP by de-
fault, here, we present test accuracies of two kinds of α0

on CIFAR-10, shown in Table 5. While α0 = 1 is a better
choice, our PGMPF is insensitive to α0.

Model
Pruned

percent(%)
dropout

Type Accu.(%) FLOPs(PR%)

ResNet-20
20 - 92.34 2.87E7(29.3)
20 layer-wise 92.60 2.87E7(29.3)
20 channel-wise 92.78 2.87E7(29.3)

ResNet-56

20 - 93.84 8.98E7(28.4)
20 layer-wise 94.25 8.98E7(28.4)
20 channel-wise 95.07 8.98E7(28.4)
40 - 93.74 5.94E7(52.6)
40 layer-wise 93.63 5.94E7(52.6)
40 channel-wise 94.36 5.94E7(52.6)

Table 4: Influence of dropout type of the prior gradient mask
on CIFAR-10.

Model
Pruned

percent(%) α0 Accu.(%) FLOPs(PR%)

ResNet-20

20 0 92.56 2.87E7(29.3)
20 1 92.78 2.87E7(29.3)
40 0 91.49 2.43E7(54.0)
40 1 91.54 2.43E7(54.0)

ResNet-56

20 0 94.97 8.98E7(28.4)
20 1 95.07 8.98E7(28.4)
40 0 94.47 5.94E7(52.6)
40 1 94.36 5.94E7(52.6)

Table 5: Influence of α0 on CIFAR-10.

Conclusion
In short, we propose a novel pruning-aware network fine-
tuning framework PGMPF. Unlike previous methods that re-
quire complicated pruning criteria or heavy training costs,
our PGMPF elegantly unifies pruning and fine-tuning with-
out introducing obvious training burdens. An excellent
tradeoff between large model capacity during fine-tuning
and stable convergence speed to obtain the final compact
model is achieved. Extensive experiments demonstrate the
effectiveness of our method.

146



References
Alvarez, J. M.; and Salzmann, M. 2017. Compression-aware
training of deep networks. Advances in Neural Information
Processing Systems, 2017-December(Nips): 857–868.
Ayinde, B. O.; and Zurada, J. M. 2018. Building Effi-
cient ConvNets using Redundant Feature Pruning. ArXiv,
abs/1802.07653.
Bochkovskiy, A.; Wang, C.-Y.; and Liao, H. 2020.
YOLOv4: Optimal Speed and Accuracy of Object Detec-
tion. ArXiv, abs/2004.10934.
Cai, L.; An, Z.; Yang, C.; and Xu, Y. 2021a. Soft and Hard
Filter Pruning via Dimension Reduction. 2021 International
Joint Conference on Neural Networks (IJCNN), 1–8.
Cai, L.; An, Z.; Yang, C.; and Xu, Y. 2021b. Softer Pruning,
Incremental Regularization. 2020 25th International Con-
ference on Pattern Recognition (ICPR), 224–230.
Cai, Y.; Yin, Z.; Guo, K.; and Xu, X. 2021c. Pruning the
Unimportant or Redundant Filters? Synergy Makes Better.
2021 International Joint Conference on Neural Networks
(IJCNN), 1–8.
Chen, J.; Zhu, Z.; Li, C.; and Zhao, Y. 2019. Self-Adaptive
Network Pruning. ArXiv, abs/1910.08906.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. E.
2020. A Simple Framework for Contrastive Learning of Vi-
sual Representations. ArXiv, abs/2002.05709.
Ding, X.; Guo, Y.; Ding, G.; and Han, J. 2019. ACNet:
Strengthening the Kernel Skeletons for Powerful CNN via
Asymmetric Convolution Blocks. 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 1911–1920.
Frankle, J.; and Carbin, M. 2019. The Lottery Ticket
Hypothesis: Finding Sparse, Trainable Neural Networks.
arXiv: Learning.
Gao, X.; Zhao, Y.; Dudziak, L.; Mullins, R.; and Xu, C.
2019. Dynamic Channel Pruning: Feature Boosting and
Suppression. ArXiv, abs/1810.05331.
Han, K.; Wang, Y.; Xu, Y.; Xu, C.; Wu, E.; and Xu, C.
2020. Training Binary Neural Networks through Learning
with Noisy Supervision. ArXiv, abs/2010.04871.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. B. 2020a.
Momentum Contrast for Unsupervised Visual Representa-
tion Learning. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 9726–9735.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. B. 2017.
Mask R-CNN. 2017 IEEE International Conference on
Computer Vision (ICCV), 2980–2988.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, 2016-December: 770–778.
He, Y.; Ding, Y.; Liu, P.; Zhu, L.; Zhang, H.; and Yang, Y.
2020b. Learning Filter Pruning Criteria for Deep Convo-
lutional Neural Networks Acceleration. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2006–2015.

He, Y.; Dong, X.; Kang, G.; Fu, Y.; Yan, C.; and Yang, Y.
2019a. Asymptotic Soft Filter Pruning for Deep Convolu-
tional Neural Networks. IEEE Transactions on Cybernetics,
PP: 1–11.
He, Y.; Kang, G.; Dong, X.; Fu, Y.; and Yang, Y. 2018. Soft
filter pruning for accelerating deep convolutional neural net-
works. IJCAI International Joint Conference on Artificial
Intelligence, 2018-July: 2234–2240.
He, Y.; Liu, P.; Wang, Z.; Hu, Z.; and Yang, Y. 2019b. Filter
Pruning via Geometric Median for Deep Convolutional Neu-
ral Networks Acceleration. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 4335–
4344.
Hinton, G. E.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network. ArXiv, abs/1503.02531.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
Hu, B.; Song, R.-J.; Wei, X.-S.; Yao, Y.; Hua, X.; and Liu, Y.
2020. PyRetri: A PyTorch-based Library for Unsupervised
Image Retrieval by Deep Convolutional Neural Networks.
Proceedings of the 28th ACM International Conference on
Multimedia.
Hua, W.; Sa, C. D.; Zhang, Z.; and Suh, G. 2019. Channel
Gating Neural Networks. In NeurIPS.
Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks. In Advances in
Neural Information Processing Systems.
Jaderberg, M.; Vedaldi, A.; and Zisserman, A. 2014. Speed-
ing up convolutional neural networks with low rank expan-
sions. In BMVC 2014 - Proceedings of the British Machine
Vision Conference 2014.
Krizhevsky, A. 2009. Learning Multiple Layers of Features
from Tiny Images. . . . Science Department, University of
Toronto, Tech. . . . .
Lee, M. K.; Lee, S. H.; Lee, S. H.; and Song, B. 2020. Chan-
nel Pruning Via Gradient Of Mutual Information For Light-
Weight Convolutional Neural Networks. 2020 IEEE In-
ternational Conference on Image Processing (ICIP), 1751–
1755.
Li, B.; Wu, B.; Su, J.; Wang, G.; and Lin, L. 2020. Eagle-
Eye: Fast Sub-net Evaluation for Efficient Neural Network
Pruning. In ECCV.
Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf,
H. P. 2017. Pruning Filters for Efficient ConvNets. ArXiv,
abs/1608.08710.
Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.;
and Shao, L. 2020. HRank: Filter Pruning Using High-Rank
Feature Map. 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 1526–1535.
Lin, S.; Ji, R.; Yan, C.; Zhang, B.; Cao, L.; Ye, Q.; Huang,
F.; and Doermann, D. 2019. Towards Optimal Structured
CNN Pruning via Generative Adversarial Learning. 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2785–2794.

147



Liu, C.; Wang, Y.; Han, K.; Xu, C.; and Xu, C. 2019a. Learn-
ing Instance-wise Sparsity for Accelerating Deep Models.
ArXiv, abs/1907.11840.
Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differ-
entiable Architecture Search. ArXiv, abs/1806.09055.
Liu, L.; Deng, L.; Chen, Z.; Wang, Y.; Li, S.; Zhang, J.;
Yang, Y.; Gu, Z.; Ding, Y.; and Xie, Y. 2020. Boosting Deep
Neural Network Efficiency with Dual-Module Inference. In
ICML.
Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; and Zhang, C.
2017. Learning Efficient Convolutional Networks through
Network Slimming. Proceedings of the IEEE International
Conference on Computer Vision, 2017-Octob: 2755–2763.
Liu, Z.; Mu, H.; Zhang, X.; Guo, Z.; Yang, X.; Cheng,
K.; and Sun, J. 2019b. MetaPruning: Meta Learning
for Automatic Neural Network Channel Pruning. 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), 3295–3304.
Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T.
2019c. Rethinking the Value of Network Pruning. ArXiv,
abs/1810.05270.
Luo, J. H.; and Wu, J. 2020. AutoPruner: An end-to-end
trainable filter pruning method for efficient deep model in-
ference. Pattern Recognition, 107.
RussakovskyOlga; DengJia; Suhao; KrauseJonathan;
SatheeshSanjeev; MaSean; HuangZhiheng; KarpathyAn-
drej; KhoslaAditya; BernsteinMichael; BergAlexander,
C.; and Fei-FeiLi. 2015. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision.
Simonyan, K.; and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. In 3rd In-
ternational Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings.
Wang, W.; Fu, C.; Guo, J.; Cai, D.; and He, X. 2019.
COP: Customized deep model compression via regularized
correlation-based filter-level pruning. In IJCAI Interna-
tional Joint Conference on Artificial Intelligence. ISBN
9780999241141.
Xu, Y.; Wang, Q.; An, Z.; Wang, F.; Zhang, L.; Wu, Y.;
Dong, F.; Qiu, C.-W.; Liu, X.; Qiu, J.; Hua, K.; Su, W.; Xu,
H.; Han, Y.; Cao, X.; ju Liu, E.; Fu, C.; Yin, Z.; Liu, M.;
Roepman, R.; Dietmann, S.; Virta, M.; Kengara, F.; Huang,
C.; Zhang, Z.; Zhang, L.; Zhao, T.; Dai, J.; Yang, J.; Lan, L.;
Luo, M.; Huang, T.; Liu, Z.; Qian, S.; An, T.; Liu, X.; Zhang,
B.; He, X.; Cong, S.; Liu, X.; Zhang, W.; Wang, F.; Lu, C.;
Cai, Z.; Lewis, J. P.; Tiedje, J. M.; and bing Zhang, J. 2021.
Artificial Intelligence: A Powerful Paradigm for Scientific
Research. The Innovation.
Yan, Y.; Li, C.; Guo, R.; Yang, K.; and Xu, Y. 2021. Chan-
nel Pruning via Multi-Criteria based on Weight Dependency.
2021 International Joint Conference on Neural Networks
(IJCNN), 1–8.
Yang, B.; Bender, G.; Le, Q. V.; and Ngiam, J. 2019. Cond-
Conv: Conditionally Parameterized Convolutions for Effi-
cient Inference. In NeurIPS.

Yang, C.; An, Z.; Cai, L.; and Xu, Y. 2021. Hierarchical
Self-supervised Augmented Knowledge Distillation. In Pro-
ceedings of the Thirtieth International Joint Conference on
Artificial Intelligence (IJCAI), 1217–1223.
Yang, C.; An, Z.; and Xu, Y. 2021. Multi-View Contrastive
Learning for Online Knowledge Distillation. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 3750–3754.
Yang, C.; An, Z.; Zhu, H.; Hu, X.; Zhang, K.; Xu, K.; Li,
C.; and Xu, Y. 2020. Gated convolutional networks with hy-
brid connectivity for image classification. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
12581–12588.
Yin, J.; Qiu, J.; Zhang, S.; Ma, Z.; and Guo, J. 2020. SSKD:
Self-Supervised Knowledge Distillation for Cross Domain
Adaptive Person Re-Identification. ArXiv, abs/2009.05972.
Yuan, L.; Tay, F. E. H.; Li, G.; Wang, T.; and Feng, J.
2020. Revisiting Knowledge Distillation via Label Smooth-
ing Regularization. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 3902–3910.
Zhao, C.; Ni, B.; yu Zhang, J.; Zhao, Q.; Zhang, W.; and
Tian, Q. 2019. Variational Convolutional Neural Network
Pruning. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2775–2784.
Zhu, M.; and Gupta, S. 2018. To prune, or not to prune:
exploring the efficacy of pruning for model compression.
ArXiv, abs/1710.01878.

148


