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Abstract

We revisit the planning problem in the blocks world,
and we implement a known heuristic for this task. Im-
portantly, our implementation is biologically plausible,
in the sense that it is carried out exclusively through the
spiking of neurons. Even though much has been accom-
plished in the blocks world over the past five decades,
we believe that this is the first algorithm of its kind. The
input is a sequence of symbols encoding an initial set of
block stacks as well as a target set, and the output is a se-
quence of motion commands such as “put the top block
in stack 1 on the table”. The program is written in the
Assembly Calculus, a recently proposed computational
framework meant to model computation in the brain
by bridging the gap between neural activity and cog-
nitive function. Its elementary objects are assemblies of
neurons (stable sets of neurons whose simultaneous fir-
ing signifies that the subject is thinking of an object,
concept, word, etc.), its commands include project and
merge, and its execution model is based on widely ac-
cepted tenets of neuroscience. A program in this frame-
work essentially sets up a dynamical system of neurons
and synapses that eventually, with high probability, ac-
complishes the task. The purpose of this work is to es-
tablish empirically that reasonably large programs in the
Assembly Calculus can execute correctly and reliably;
and that rather realistic — if idealized — higher cogni-
tive functions, such as planning in the blocks world, can
be implemented successfully by such programs.

Introduction

How does intelligence happen? How can reasoning,
problem-solving, decision-making, planning, empathy, lan-
guage, art be achieved through the activity of neurons
and synapses? Despite tremendous advances over the past
decades in our understanding of neural mechanisms — in-
creasingly assisted and propelled by machine learning —
we are still very far from answering the overarching ques-
tion: how does the brain beget the mind? The difficulty lies
in the huge gap of scale and methodology between Exper-
imental Neuroscience and Cognitive Science. This frustra-
tion was articulated in a most eloquent way by Nobel lau-
reate Richard Axel, who declared in a 2018 interview (Axel
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2018): “We do not have a logic for the transformation of
neural activity to thought and action. I consider discerning
[this logic] as the most important future direction in Neuro-
science”.

The Assembly Calculus (AC) is a recently proposed for-
mal computational system (Papadimitriou et al. 2020). As
far as we know, it is the only computational system in the
literature whose explicit purpose is to bridge through com-
putation the gap between neurons and intelligence — that is
to say, to function as Axel’s logic. The basic data item of the
AC is the assembly of neurons, a large stable set of neurons
believed to represent an idea, object, word, etc., while its
operations (project, associate, merge, etc.) create and ma-
nipulate assemblies in response to stimuli and other brain
events. Importantly, these operations can be provably simu-
lated through the activity of stylized neurons and synapses.
All said, the AC is a Turing complete computational system
founded firmly on the basic principles of Neuroscience. In
the next section, we provide a comprehensive introduction
to the AC; however, the interested reader may want to read
(Papadimitriou et al. 2020).

So, is the AC the bridging “logic” sought by Axel? One
avenue for pursuing this important question is to demon-
strate empirically that reasonably complex cognitive phe-
nomena can be formulated and implemented in the AC
framework. Indeed, in the original paper (Papadimitriou
et al. 2020) it was argued that aspects of language genera-
tion can be handled by the operations of the AC, while in a
very recent paper (Mitropolsky, Collins, and Papadimitriou
2021), a Parser implemented in the AC was demonstrated to
analyze syntactically reasonably complex sentences of En-
glish, and it was argued that it can be generalized to more
complex features as well as other natural languages.

Our contribution in this paper is to demonstrate that a
program in the AC is capable of implementing reasonably
sophisticated stylized planning strategies — in particular,
heuristics for solving tasks in the blocks world (Gupta and
Nau 1991; Slaney and Thiébaux 2001). A blocks-world con-
figuration is defined by a set of stacks, where a stack is a
sequence of unique blocks, each sitting on top of the pre-
vious one. A stack of size one is just a block sitting on the
table (see e.g. Fig. 1-A). A configuration can be manipulated
by moving a block from the top of a stack (or from the ta-
ble) to the top of another stack (or to the table). A task in



the blocks world is the following: Given a starting configu-
ration Cjp;; and a goal configuration Cgoq, find a sequence
of actions which transforms Cjp¢ into Cgegr. It was shown
in Gupta and Nau (1992) that solving a task in the blocks
world with the smallest number of actions is NP-Complete,
and it was observed that the following provides a simple 2-
approximation strategy: Move to the table all blocks that are
not in their final positions, and then move these blocks one
by one to their final positions.

Here we implement this strategy in the AC. From the ex-
position of this implementation and demonstration — which
happens to employ representations and structures of a dif-
ferent style from those needed for language tasks (Papadim-
itriou et al. 2020; Mitropolsky, Collins, and Papadimitriou
2021) — we believe that it will become clear that more com-
plicated heuristics for solving related tasks can be similarly
implemented in the AC.

In fact, the kind of representations needed for planning,
involving long “chains” of assemblies linked through strong
synaptic connections, reveals a limitation of the AC which
was not apparent before: we find empirically that there are
limits — depending on the parameters of the execution
model, such as the number of excitatory neurons per brain
area, synaptic density, synaptic plasticity, and assembly size
— on the length of such chains that can be implemented re-
liably. As chaining is also used in the Turing machine simu-
lation demonstrating the completeness of the AC (Papadim-
itriou et al. 2020), such limitations are significant because
they bound from above the space complexity — and there-
fore the parallel time complexity — of AC computations.
We briefly discuss and quantify this issue in the experimen-
tal validation section.

Related Work

Terry Winograd introduced the blocks world half a century
ago as the context for his language understanding system
SHRDLU (Winograd 1971), but since then blocks-world
planning has been widely investigated, primarily because
such tasks appear to capture several of the difficulties posed
to planning systems (Gupta and Nau 1991, 1992). There has
been extensive work in Al on blocks world problems, in-
cluding recently on leveraging ANNSs for solving them, and
learning to solve them from examples (e.g., the Neural Logic
Machines of Dong et al. (2019), or Neural Turing Machines,
which are used for related problem-solving tasks (Graves,
Wayne, and Danihelka 2014)).

Bridging the gap between low-level models of neural ac-
tivity in the brain and high-level symbolic systems mod-
elling cognitive processes is a fundamental open problem
in artificial intelligence and neuroscience at large (Dour-
sat 2013; Chady 1999). Several computational cognitive-
science papers address the problem of solving (or learning
to solve) block-worlds tasks in higher-level computational
models of cognition, such as ACT-R or SOAR (see for in-
stance Kennedy and Trafton (2006); Kurup (2008); Panov
(2017)). In contrast to the present paper, however, these
works utilize high-level languages and data structures for the
programming of these systems, without providing a link, as
we do, to the behavior of stylized neurons and synapses, in
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an effort to remain as faithful as possible to the ways animal
brains would solve these tasks. Less related to our problem
is the literature on block stacking (see, for example, Hayashi
(2007); Tian, Luo, and Cheung (2020)). These papers the
focus on the ability of humans and chimpanzees to place a
block on top of an existing tower without toppling it. Finally,
it is worth mentioning some previous works on solving plan-
ning tasks through spiking neural networks, such as (Rueck-
ert et al. 2016; Basanisi et al. 2020), in which the attention
is more focused on learning world models.

A spiking neural network framework not unlike ours is
Nengo (Bekolay et al. 2014). One important difference is
that our framework focuses on the known behavior called
assemblies which enable higher levels of abstraction such as
the AC, and carrying out far more advanced tasks such as
in (Mitropolsky, Collins, and Papadimitriou 2021) and the
present paper.

The Assembly Calculus

The Assembly Calculus (AC) (Papadimitriou et al. 2020) is
a computational system for modeling a dynamical system
of firing neurons. In this system, there is a finite number of
areas, each containing n neurons. The neurons of an area
form a random Erd&s-Rényi directed graph G, p,, where p is
the probability that two neurons of the area are connected.
Moreover, certain ordered pairs of areas are connected one
to another through an Erd6s-Rényi directed bipartite graph
Gr,p- The directed connections between areas are called
fibers.

In the AC, neurons in an area A fire in discrete time steps,
and are subject to stylized forms of inhibition and plasticity.
For what concerns inhibition, at any time step, we assume
only k4 of the n neurons fire, that is, the ones that previously
received the highest total input from all other areas — these
k4 neurons are sometimes called the winners. Plasticity is
modelled by assuming that, if, at a given time step, neuron &
fires and, at the next time step, an out-neighbor neuron y of
z fires, then the weight of the synapse from x to y (which is
1 at the beginning) is multiplied by (14 34), where 84 > 0.
In the original definition of the AC, a process of homeosta-
sis was also modelled through a periodic renormalization,
at a different time scale, of the synaptic weights, in order
to avoid the generation of huge weights. Such process is of
course part of any realistic brain system, also providing a
mechanism for forgetting. We will not implement here this
feature of the model.

Lastly, yet importantly, the AC allows inhibiting and dis-
inhibiting areas and fibers at different time steps. The ex-
act mechanism through which areas and fibers are (dis)-
inhibited may vary; in a recent paper modeling syntac-
tic processing using the AC, Mitropolsky, Collins, and Pa-
padimitriou (2021) model specific neurons as having (dis)-
inhibitory effects on areas or fibers. In this work, (dis)-
inhibition is always determined by which areas and fibers
fired at the previous time step.

The most important emergent object in the AC is the as-
sembly, that is, a stable set of k 4 highly interconnected neu-
rons in an area A. It is emergent in the sense that assemblies
are not a primitive of the model; instead, they are formed



through its more basic operations. Assemblies are by now
well known and widely studied in neuroscience, and are
thought to represent concepts, ideas, objects, words, etc.,
and are increasingly believed in recent years to play a cen-
tral role in cognitive processes (Buzsdki 2010), often called
“the alphabet of the brain” (Buzsdki 2021). In terms of clas-
sical thinking in Al, one could think of assemblies as the
boundary in the brain between sub-symbolic and symbolic
computation.

The AC makes possible to perform certain operations
with assemblies, described next — in fact, it is through these
operations that assemblies are created, in a way that guaran-
tees high connectivity. In Papadimitriou et al. (2020), the
authors demonstrate, both mathematically and through sim-
ulation, that these operations are “possible” in the sense that
they can be stably performed with high probability in the
dynamical system of neurons outlined in the previous para-
graphs. In this paper, we mostly make use of one of these
operations: projection of an assembly in an area into another
assembly in another area.

Let us assume that an assembly = of k4 neurons of the
area A has just fired into an area B (presumably through
a disinhibited fiber going from A to B), and assume that B
was quiescent at that time (no neurons were firing). This will
result in a set wy of kp neurons (the winners) firing at the
next time step. Next, the neurons in B will receive inputs
not only from the k4 neurons of the assembly in A, which
will continue to fire, but also from the neurons in w; through
recurrent connections within B: this will result in a set w9 of
kp neurons, (the new winners) firing at the next time step,
and so on. It has been proved that, under appropriate values
of the parameters n, k4, kg, 3, and p, this process converges
with high probability to an assembly y of kg neurons in B,
which is called the projection of & into B and can be thought
as a copy of z in B such that, from now on, y will fire every
time z fires.

For a complete description of the AC the reader is referred
to Papadimitriou et al. (2020), where in addition to stability
of various assembly operations, it is also proved that, un-
der certain assumptions, this computational system is ca-
pable of performing arbitrary computations as long as the
space required does not exceed n/k4 (under much milder

assumptions, \/n/k4). In this paper, similarly to the Parser
of Mitropolsky, Collins, and Papadimitriou (2021), our AC
programs work by projecting between all pairs of disinhib-
ited areas along disinhibited fibers at each time step. For
brevity, this operation, i.e. a simultaneous set of projections
between multiple areas, is called strong projection.

Our AC programs are described with the operations in Ta-
ble 1. Inhibition and disinhibition are primitives of the AC
system, whereas strong projection (tantamount to a set of si-
multaneous projections) is an emergent property of the AC’s
dynamical system. We use several other such “emergent”
operations, i.e., that are not primitives of the AC system, but
can be stably implemented with its basic operations. For ex-
ample, we will make use of an operation which allows us to
verify whether in a specific area there exists a stable assem-
bly (as the result of a projection). In Table 1, we summa-
rize the operations (primitive and non primitive) of the AC
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system, that we will use in this paper. Note that the block
activation operation is a special operation, which causes an
assembly (in a special area BLOCKS) corresponding to the
named block to fire.

The Blocks World AC Program

A blocks world (BW) configuration is a set of stacks, where
each stack is a sequence of blocks, from top to bottom. Each
block is assumed to be a unique integer between 1 and s.
Two BW configurations, the initial and the target configura-
tion, constitute the input to the AC program (see Figure 1-
A). We shall at first concentrate on configurations with a sin-
gle stack — already a meaningful problem — and we shall
eventually graduate to multiple stacks (last subsection). We
next describe four AC programs: (a) a program that takes
the input — a sequence of integers representing a stack —
and creates a list-like structure, in a set of brain areas and
fibers, for representing the stack; (b) a program that removes
the top block of a stack thus represented; (c) a program that
adds a new block to the represented stack; and (d) a program
for computing the intersection of two stacks represented this
way, that is, the longest common suffix of the two sequences,
read from bottom to top.

All four programs work on a common set of brain areas
connected with bi-directional fibers: the area BLOCKS con-
tains a fixed assembly for every possible block (these as-
semblies are special, in that each can be activated explicitly
as the presentation of the corresponding number in the in-
put). There are four other areas used in our AC programs:
HEAD, NODEg, NODE{, and NODE>. HEAD is connected to
the NODE( area via fibers, while each NODE area is con-
nected to BLOCKS, and to each other in the shape of a trian-
gle: NODEj is connected with NODE;, which is connected
with NODEs, which is connected with NODE,, (see Figure 1-
B). All of these areas are standard brain areas of the AC sys-
tem, containing n randomly connected neurons of which at
most k fire at any time.

The Parser

The parser (see Algorithm 1) processes each block in a stack
sequentially, starting from the top. When it analyses the
first block (see lines 1-3), the three areas BLOCKS, HEAD,
and NODE, and the fibers between HEAD and NODE and
between NODE, and BLOCKS are disinhibited. The block
assembly is then activated and a strong projection is per-
formed, thus creating a connection between the assembly
in BLOCKS corresponding to the block and an assembly in
NODE, and between this latter assembly and an assembly
in HEAD (see the red dashed lines in Figure 1-C1). Succes-
sively, the HEAD area and the fibers between HEAD and
NODE( and between NODEy and BLOCKS are inhibited.
For each other block in the stack (see lines 5-8), the NODE
area next to the one (i.e., NODE; 1,0q 3) currently disinhib-
ited (i.e., NODE; 41 mod 3) is disinhibited, and the fibers be-
tween this NODE area and the BLOCKS area and between
the two NODE areas are disinhibited. The next block assem-
bly is then activated and a strong projection is performed,
creating a connection between the assembly in BLOCKS and



H Operation H Input

Semantics ‘ ‘

activateBlock (b) Block number b

disinhibitArea (A) Set A of areas
disinhibitFiber (P) || Set P of pairs of areas
inhibitArea (A) Set A of areas
inhibitFiber (P) Set P of pairs of areas
isAssembly (a) Areaa

project (a1, a2) Areas a1 and as

strongProject()

Makes the assembly of the block b in the area BLOCKS fire

Disinhibit all the areas in A

Disinhibit the fibers between any pair of areas in P

Inhibit all the areas in A

Inhibit the fibers between any pair of areas in P

Verify whether there is an active assembly in the area a

Executes a projection of (the active assembly in) the area a; to the area a2
Executes a strong projection involving all the disinhibited areas and fibers

Table 1: The AC operations (primitive and non primitive) used in the paper.

Algorithm 1: PARSER (.5)

input: a stack S of blocks by, bo, . . ., bs.

activateBlock (b;); strongProject();

foreach i with2 < i < sdo
p=(i—2)mod 3;¢c= (i —1) mod 3;

activateBlock (b;); strongProject();

=B 7 T I

end
inhibitArea ({BLOCKS, NODE(s_1) mod 3} )

—
=

disinhibitArea ({BLOCKS, HEAD, NODE(}); disinhibitFiber ({(HEAD, NODE), (NODEq, BLOCKS)});

inhibitArea ({HEAD}); inhibitFiber ({(HEAD, NODEy), (NODEg, BLOCKS)});

disinhibitArea ({NODE.}); disinhibitFiber ({(NODE,, NODE,), (NODE., BLOCKS)});

inhibitArea ({NODE,}); inhibitFiber ({(NODE,, NODE,) , (NODE., BLOCKS)});

an assembly in the NODE area just disinhibited, and between
this latter assembly and the assembly previously activated in
the previous NODE area (see the red dashed lines in the fig-
ures 1-C2,C3,C4). After this and before the next block, this
latter NODE area and the fibers between it and the NODE
area after it, and those between the NODE area after it and
the BLOCKS area, are inhibited.

The final data structure is a chain of assemblies starting
from an assembly in HEAD and passing through assemblies
in the NODE areas (see Figure 1-C6). Note that this chain
can contain more than one assembly in the same NODE area:
for instance, in Figure 1-C6, the chain contains two assem-
blies in NODEy and NODE;. Each assembly in the chain is
also connected to the assembly in BLOCKS corresponding
to a block in the stack. For instance, the sequence of such
assemblies in Figure 1-C6 corresponds to the sequence of
blocks 4,5, 3,1, 2, which is exactly the sequence of blocks
in the stack from top to bottom (see the left part of Figure 1-
A). Note that Algorithm 1 uses a constant number of brain
areas (that is, five), independently of the number of blocks
in the stack.

Removing the Top Block

In order to implement in AC the algorithm which transforms
an input stack of blocks into a target stack of blocks, we
start by describing an AC program to remove a block from
the top of a stack. This program uses the same areas and
fibers of the parser described in the previous section (see
Figure 1-B), with the addition of fibers between HEAD with
NODE1, and HEAD with NODEs. Intuitively, these fibers are
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needed to allow changing the head of the chain representing
the current stack, without having to shift all the assemblies
one position to the left.

The AC program, which “removes” the block from the top
of the stack, uses the connections created by the parser in
order to activate the assembly in the NODE;, which is con-
nected to the block just below the top block (that is block 5 in
Figure 1-D1,D2). This is done by projecting from the HEAD
into NODE,, and projecting from NODE( into the NODE,
(see Figure 1-D1). Through strong projection, the program
successively creates a new connection from the active as-
sembly in the NODE; area to a new assembly in the HEAD
area (see the red dashed line in Figure 1-D2).

Note that the connections between the light gray assem-
blies in Figure 1-D2 are still active, but they will not be used
in the future since the last active assembly in the HEAD area
is now connected to the assembly in the NODE; area. These
connections, indeed, might later disappear because of a pro-
cess of homeostasis, which can be modeled in the AC sys-
tem through a sort of “renormalization” (as described in Pa-
padimitriou et al. (2020)). In a certain sense, the system will
slowly “forget” which block was on the top of the stack, be-
fore a removal operation.

The removal of the top block can be repeated as many
times as the number of blocks in the stack. The only dif-
ference is that the activation of the assembly in NODE cor-
responding to the block below the top one is done by pro-
jecting HEAD into the NODE area corresponding to the top
block, and then projecting from this NODE area to the one
following it (in modular arithmetic).
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Figure 1: A: Two BW configurations. In the rest of the figure, we consider the BW configuration shown on the left. B: The five
areas used by the parser AC program, along with the connections through fibers. C1-6: The behavior of the parser AC program.
The black solid lines denote the fibers of Figure B which are disinhibited. The red dashed lines denote the newly created
connections between assemblies in different areas, while the black dotted lines denote the connections previously created. D1-
2: The behavior of the AC program which removes the block from the top of a stack, with input the data structure resulting
from the parser execution (only the areas involved in the remove operation are shown). The black solid lines denote the fibers
which are disinhibited. The red dashed lines denote the newly created connections between assemblies in different areas, while
the black dotted lines denote the already existing connections. E/-2: The behavior of the AC program which put the block 4 on
top of the stack, above the block 5. The black solid lines denote the fibers which are disinhibited. The red dashed lines denote
the newly created connections (unidirectional and bidirectional) between assemblies in different areas, while the black dotted
lines denote the already existing connections.
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In order to maintain an updated representation of the
blocks world configuration, we use four additional brain ar-
eas to store the chain of blocks which have been removed
and that, hence, are currently on the table. This chain can
be implemented in the AC system exactly the same way we
did when parsing a stack of blocks. Then, when we want to
read the current data structure stored in the AC system, we
examine the stack of blocks represented in HEAD and the
NODE areas, as well as the chain of blocks on the table in
the additional areas.

Putting a Block on Top of the Stack

The second operation we need in order to implement a min-
imal planning algorithm for the blocks world problem is
putting a block on top of the stack. The AC program, for
this operation first projects the block from in BLOCKS into
the NODE area preceding (in modular arithmetic) the NODE
area currently connected to HEAD, and then projects the
newly created assembly into HEAD (see Figure 1-E1). Suc-
cessively, the program executes a strong projection between
the four areas in order to correctly connect them (see Fig-
ure 1-E2). Once again, an active connection between the
HEAD area and a NODE area will still exist after the exe-
cution of the AC program, but this connection will not be
used in the future.

Computing the Intersection of Two Stacks

The pop and put operations described in the previous two
sections are sufficient to implement a simple planning algo-
rithm, which consists in moving all the blocks on the table
(by using pop), and by then moving the blocks on the ta-
ble on top of the stack (by using put) according to the target
stack.

In order to improve this algorithm and execute the two-
approximation algorithm described in the introduction, we
need an AC program which implements a third operation,
that is, finding the intersection of two stacks. This operation
looks for the common sub-stack of the two stacks (start-
ing from the bottom) and return the highest block in this
sub-stack. Then only the blocks above this block have to be
moved on the table and reassembled in the right order.

In a nutshell, this can be achieved in AC by first reaching
the bottom of the two stacks which have to be compared, and
then proceeding upwards until we find two different blocks,
or the end of one of the two stacks.

Multiple Stacks

So far in this exposition we have concerned ourselves with
configurations consisting of one stack. In our experiments
(see the next section) we have implemented up to five stacks
by employing a different set of four areas for each stack.
This is a bit unsatisfactory, because it implies that the max-
imum number of stacks that can be handled by the brain is
encoded in the brain architecture. There is a rather simple —
in principle — way to achieve the same effect by re-using
the same four areas; we have an initial implementation of
this idea, which we intend to test in the future.

With multiple stacks one has to solve the matching prob-
lem: identifying pairs of stacks in the input and output that
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must be transformed one to the other. Naively, this can be
done by comparing all pairs of stacks, but this entails effort
that is quadratic in the number of stacks. This latter strat-
egy is the one currently employed in our experiments. In the
future, we intend to test a more principled way, based on
hashing the stacks into their bottom element, and attending
to any collisions.

Experiments

A software system for programming in the AC, as well as
implementations of the algorithms described in this paper,
have been written in Julia (Bezanson et al. 2017). We make
use of the Java generator for BW configurations available
at Koeman (2020), based on Slaney and Thiébaux (2001).
We ran experiments on over 100 blocks-world configura-
tions, with up to five stacks and 10, 20, and 30 blocks. The
algorithm worked correctly in every instance. We have used
various settings of the parameters n, k, p, 8 — a particularly
good set of parameters is n = 10%,k = 50,p = 0.1,8 =
0.1. Interestingly, the algorithms do not work in all parame-
ter settings, because of limits on the chaining operation (see
the next discussion). The Julia source code can be found at
(d’ Amore et al. 2021a).

In general, the amount of rounds of strong project (par-
allel spikings of neurons) needed to carry out the BW tasks
seems to be around 35 spikes per block processed (parse,
popped, or pushed), which, assuming roughly 50 Hz spikes
for excitatory neurons in the brain, is around 1.4 seconds per
operation.

Limits of the AC. An unexpected finding of our simula-
tions is that they are stable only under very specific parame-
ter settings. The bottleneck of the planning algorithms is in
parsing the chain of blocks, that is, memorizing the sequence
of blocks so they can be read out reliably. In isolation we call
this operation “chaining”.

The results in this section, which describe some properties
and limits of chaining, can be viewed as theoretical proper-
ties of the AC. First, we find it is only possible to chain a
rather limited number of blocks. For instance, even though
with n = 10® and k = 50 there is, at least in theory, space
for 10°/50 = 200000 non-overlapping assemblies, even
with strong p and 3, we can only reliably chain up to 20
blocks. This is illustrated in Figure 2a, which shows how
many of s blocks were successfully read out after chaining.
Generally, for higher values of n (and a higher n : k ratio),
longer portions of the chain tend to be correctly stored, but
the operation is highly noisy: in some trials it will fail and
then succeed for a longer chain. Indeed, unlike the assembly
operations described in Papadimitriou et al. (2020) (Project,
Merge, and so on) which are either stable with overwhelm-
ing probability under appropriate parameters, or do not suc-
ceed if the parameters are not appropriately strong, chaining
appears to push the computational power of the AC to its
limits, and often succeeds or fails between repeated trials
with the same parameters.

One can also look at a related property: after chaining,
how many of the assemblies in the NODE; areas during read-
out are “strong” in the sense that they pass ISASSEMBLY()
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Figure 2: Experiments on the “chaining” operation, the bot-
tleneck of the AC planning algorithm. (a) shows number
of blocks correctly chained for various chain length; (b)
shows number of “strong” assemblies formed in chaining;
(c) shows maximal chain length that is correctly parsed for
varying k. (b) and (c) show averages over 50 trials per pa-
rameter setting (exact numbers, including sample standard
deviation, are provided in the full version at (d’ Amore et al.
2021b)). In these charts, p = S = 0.1 was used, in (a) and
(b) k = 50.
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with a high threshold (i.e. firing those k neurons recursively
results in the same set of k winners)? Interestingly, this
proportion, which is significantly less than the maximum
of s, does not change significantly when we vary n, p, 8-
there appears to be a natural proportion of strong assemblies
formed during chaining (Figure 2b).

Finally, in Figure 2¢ we varied k and found the maximally
long chain that succeeded completely. These experiments
again showed that for higher n : k ratio, longer chains are
possible, and that for each setting of n there is a narrow win-
dow of optimal k that allows for the longest chains— above
of this range, as we increase k the maximum chain does not
change, i.e. it appears to settle to some natural lower bound.
A more thorough analysis of chaining is an important direc-
tion in AC theory, since such maneuvers could be subrou-
tines in various cognitive processes (for instance, Mitropol-
sky, Collins, and Papadimitriou (2021) suggest using it for
processing chains of identical parts of speech, such as mul-
tiple adjectives in a noun phrase).

Conclusions and Future Directions

The aim of this work is not so much to produce a performing
system, but to demonstrate experimentally that reasonably
large and complex programs in the assembly calculus can
execute correctly and reliably, and in particular can imple-
ment in a natural manner planning strategies for solving in-
stances of the blocks world problem. In fact, the implemen-
tation of these strategies is based on the realization of a lisz-
like data structure which makes use of a constant number of
brain regions. Confirming theoretical insights, we have ex-
perimentally found that the structure’s reliability depends on
the ratio between the number of neurons and the size of the
assemblies in each region — even though the dependency
was a bit more constraining than we had expected. The rea-
sons and extent of this shortcoming must be the object of
further investigation.

We have also shown how simple manipulations of the data
structure (such as the top, pop, and append operations) can
be realized by making use of a constant number of brain
regions. These manipulations allowed us to implement plan-
ning strategies based on two basic kinds of moves, that is,
moving the block from the top of a stack to the table, and
putting a block from the table to the top of a stack. All
our programs work for an arbitrary number of blocks and
a bounded number of stacks — while current work involves
implementing a version with an arbitrary number of stacks.

After syntactic analysis in language and blocks world
planning, what comes next as a compelling stylized cog-
nitive function, which could be implemented in the AC?
There is work currently in submission dealing with learn-
ing though assemblies of neurons. Two further realms of
cognition come to mind, and they happen to be closely re-
lated: Reasoning, as well as planning and problem solving
in less specialized domains than BW. It would be interest-
ing to figure out the most natural way for assemblies and
their operations to carry out deductive tasks, and, even more
ambitiously, to carry out planning in the context of logical
and constraint-based formalisms of planning, see for exam-
ple Wilkins (1988).
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