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Abstract

Low-cost airlines (LCAs) represent a new category of air-
lines that provides low-fare flights. The rise and growth of
LCAs has intensified the price competition among airlines,
and LCAs require continuous efforts to reduce their operat-
ing costs to lower flight prices; however, LCA passengers
still demand high-quality services. A common measure of
airline service quality is on-time departure performance. Be-
cause LCAs apply efficient aircraft utilization and the time
between flights is likely to be small, additional effort is re-
quired to avoid flight delays and improve their service qual-
ity. In this paper, we apply state-of-the-art predictive mod-
eling approaches to real airline datasets and investigate the
feasibility of machine learning methods for cost reduction
and service quality improvement in LCAs. We address two
prediction problems: fuel consumption prediction and flight
delay prediction. We train predictive models using flight and
passenger information, and our experiment results show that
our regression model predicts the amount of fuel consump-
tion more accurately than flight dispatchers, and our binary
classifier achieves an area under the ROC curve (AUC) of
0.75 for predicting a delay of a specific flight route.

1 Introduction
Airline deregulation eliminated the government restrictions
on airline fees and resulted in the rise and growth of a new
category of airlines called low-cost airline (LCA). LCAs
compete with traditional full-service airlines by offering low
flight fares. The success of LCAs lies in their commercial
strategy of no-frills service, high fleet utilization, and fleet
homogenization to reduce maintenance costs. LCAs had a
global market share of more than 20% in 2013 and continue
to gain popularity.

Significant effort is required to reduce the operating costs
of LCAs in order to reduce their flight prices and compete
with other airlines. One of the main expenses for LCAs
is fuel costs. LCA companies apply various approaches to
reducing aircraft weight, which affects fuel costs. For ex-
ample, many LCAs impose strict restrictions on baggage
weight, and some companies replace in-flight entertainment
devices with lighter ones. An airline reported that it saved
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£600,000 in annual fuel costs by descaling the toilet pipes
on their aircraft. 1

Although the customers of LCAs are attracted by the low
fares, they still demand high-quality services. As the market
has become crowded, pressure has been placed on LCAs to
improve their services. A common measure of airline ser-
vice quality is on-time departure performance. Because the
business model of LCAs relies on efficient aircraft utiliza-
tion, the time between flights is likely to be small. To pro-
vide high-quality services and increase customer satisfac-
tion, LCAs require additional efforts to avoid flight delays.

LCA companies continually collect data, including flight
and passenger information, which are expected to provide
useful insights in designing operating strategies for cost re-
duction and service quality improvement. In this paper, we
apply predictive modeling approaches to real airline datasets
and investigate the feasibility of machine learning methods
for cost reduction and service quality improvement in LCAs.
The datasets were collected over three years of operations by
Peach Aviation, an LCA company providing flights between
more than 20 airports in Asia.

We address two prediction problems: fuel consumption
prediction and flight delay prediction. This paper first tack-
les the problem of predicting the amount of fuel consump-
tion per flight. We use passenger information and flight in-
formation, including flight dates, routes, and aircraft IDs, to
build regression models for predicting the amount of fuel
consumption. This prediction would be helpful to optimize
the amount of fuel on board, which would make it possible
to reduce the weight of the aircraft and save fuel costs. Ad-
ditionally, because fuel prices vary throughout the day and
week, LCA companies desire an effective fuel purchasing
strategy that considers the balance between the fuel price
and demand. In order to explore the feasibility of supporting
the purchase decision, we construct models to predict the
weekly fuel consumption several months in advance.

We also address the flight delay prediction problem. Us-
ing flight and passenger information, we construct a binary
classifier that predicts whether a flight will be delayed or
not. If we can predict flight delays several days in advance,
we will be able to assign a convenient gate or deploy more

1http://www.mirror.co.uk/news/uk-news/flush-with-cash-
british-airways-saves-740383
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ground crews to a flight that is likely to be delayed. If we
can predict a delay the day before the flight, we can instruct
staff to shorten the operation time such as for fueling. Be-
cause we can take different actions according to the timing
of the prediction, we train predictive models using different
sets of features and investigate the prediction accuracies; the
features available one day before the flight, those available
one week before the flight, and those available five months
before the flight.

The results of our study to apply predictive modeling ap-
proaches to LCA datasets are summarized as follows:

• Fuel consumption prediction: Our regression model pre-
dicts the amount of fuel consumption for each flight with
a relative root mean squared error (RMSE) of 8.8%.
Our model performs better than human flight dispatchers
and reduces their prediction errors by 39.3%. We verify
our regression model is less likely to underestimate the
amount of fuel consumption as well.

• Flight delay prediction: Using flight and reservation in-
formation, our binary classifier achieves an area under the
ROC curve (AUC) of over 0.75 for several routes in the
one-day-before predictions of the flight delays.

2 Related work
Although there have been many attempts to apply machine
learning in the aviation industry (Caplener and Janku 2012;
Mathur 2002; Li et al. 2011; Das et al. 2010; Zhang and
Wang 2012; Melnyk et al. 2016; An et al. 2016; Ayhan and
Samet 2016), there are only several studies which focus on
predictions of fuel consumption and flight delays. A few re-
seachers attempted to estimate the fuel consumption using
information given by quick access recorders, which provide
quick and easy access to raw flight data (Hong, Gan-Xiang,
and Xiao-Dong 2014; Jiaxue and Tao 2015). Marques and
Leal created some flowcharts and generated profiles to esti-
mate fuel consumption (2012). Haifeng, Xu-Hui, and Xin-
Feng trained a support vector machine model to estimate the
fuel consumption of a certain aircraft using the data from the
route and an aircraft performance manual (2015). From the
perspective of flight operational quality assurance (FOQA),
an explicit aircraft performance model was used to analyze
fuel consumption (Stolzer 2002). Different from these stud-
ies, we employ information about the passengers of each
flight to predict the amount of fuel consumption.

In order to avoid flight delays, a few studies aimed to min-
imize the flight route length by formulating this problem as
an optimization problem based on flight trajectory data (Ah-
madBeygi, Cohn, and Lapp 2010; Hu et al. 2016). In con-
trast, we apply predictive modeling approaches to predict
when a flight will be delayed by using a variety of informa-
tion such as information about the passengers and the reser-
vations of the flight.

3 Airline datasets
We apply predictive modeling approaches to real airline
datasets provided by Peach Aviation, an LCA company op-
erating flights among more than 20 airports in Asia.
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Figure 1: Target flight routes for our experiments

3.1 Data description
We have three datasets called flight dataset, passenger
dataset, and reservation dataset. These data were recorded
from July 2012 to March 2015, and contain 54,000 flights
and 9,900,000 passengers in total. The flights were operated
on 12 different airports in our datasets. Figure 1 shows the
routes of the flights in our datasets.

• Flight dataset: This dataset contains general information
about each flight, such as scheduled departure date and
time, arrival date and time, airports of departure and ar-
rival, and airframe ID. Such general information is fixed
several month before each flight. We also have informa-
tion about flight plans. A flight plan includes the sched-
uled amount of fuel on board and estimated time of the
flight. These values are calculated by human flight dis-
patchers on the day before each flight.

• Passenger dataset: We have a list of passengers for each
flight with their ages and genders.

• Reservation dataset: This dataset provides the reserva-
tion completion date of each passenger on each flight,
which enables us to figure out how many people have al-
ready booked the flight at a given timing.

3.2 Flight feature representation
For addressing two problems, namely, fuel consumption pre-
diction and flight delay prediction, we construct feature vec-
tors for predictive modeling from the flight, passenger, and
reservation datasets. We consider three prediction timings:
one day before the departure date, one week before the de-
parture date, and five months before the departure date. The
available information is different depending on the timing of
the prediction. Only the time and date information is avail-
able at the timing of five months before the departure date.
A week before the departure date, in addition to the time
and date, the reservation data and airframe ID are also avail-
able. The amount of fuel on board, standby position ID,
and scheduled flight time can be used as additional features
on the day before the departure. In addition, the number of
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Table 1: List of features. We use different feature sets according to the time of the prediction: one day before the flight (D), one
week before the flight (W), and five months before the flight (M).

Feature Prediction timing Numerical or Num. of ExampleD W M categorical categories
Flight dataset
Departure year � � � Numerical - 2014
Departure month � � � Categorical 12 November
Departure day of week � � � Categorical 7 Monday
Departure day of month � � � Numerical - 10
Departure day of year � � � Numerical - 314
Scheduled departure time (in minutes of day) � � � Numerical - 1110
Scheduled arrival time (in minutes of day) � � � Numerical - 420
Airport of departure � � � Categorical 11 KIX
Airport of arrival � � � Categorical 10 TPE
Domestic or international flight � � � Categorical 2 Domestic
Airframe ID � � � Categorical 16 XI000
Standby position ID � - - Categorical 20 No.1
Scheduled fuel on board (in litres) � - - Numerical - 12000
Estimated time enroute (in minutes) � - - Numerical - 100
Reservation dataset
Num. of reservations - � - Numerical - 150
Num. of reservations by age - � - Numerical - 0–11: 1, 12–19: 4, ...
Num. of reservations by gender - � - Numerical - male: 46, female: 49
Passenger dataset
Num. of passengers � - - Numerical - 170
Num. of adult passengers � - - Numerical - 140
Num. of child passengers � - - Numerical - 30
Num. of passengers by age � - - Numerical - 0–11: 3, 12–19: 5, ...
Num. of passengers by gender � - - Numerical - male: 90, female: 55

reservations observed on the day before the departure is al-
most equivalent to the actual number of passengers. This
means that the actual number of passengers can be assumed
to be available on the previous day of the flight. The list of
features is shown in Table 1.

We count the numbers of passengers and those of reserva-
tions for each flight , and use these numbers as features. Ad-
ditionally, since our datasets contain the age and gender of
each passenger, we employ the numbers of passengers and
reservations by age and gender. We classify passengers into
14 age intervals: “0–2”, “3–11”, “12–19”, ”20–24”, “25–
29”, · · · , “65–69“, and “over 70”. Then, the number of pas-
sengers (or reservations) in each age interval is used as a fea-
ture. We use the number of passengers who are at least 18-
years old (called “adult passengers”), and that of passengers
who are under 18-years old (“child passengers”) as well.

We encode a categorical feature value, such as “airport of
departure”, into a feature vector by using one-of-K encod-
ing. In order to take the periodicity into account, we trans-
form the value of departure day of year by using trigono-
metric functions; let d be the departure day of the year of
a flight and we incorporate sin (2πd/365) and cos (2πd/365)
into a flight feature vector. This transformation enables us
to handle New Year’s Day and New Year’s Eve as sequen-
tial dates. We also apply the transformation to “scheduled
departure time” and “scheduled arrival time”. We incorpo-

rate sin (2πm/1440) and cos (2πm/1440) into a feature vector
where m is the scheduled departure (or arrival) time of a
flight in minutes of day. Finally, we apply min–max normal-
ization to the features to transform the each value of feature
into the range of zero to one.

4 Fuel consumption prediction

We first address the problem of predicting the fuel consump-
tion. Reducing fuel costs is one of the most important issues
in LCAs because they account for the largest portion of the
expenditures of airline companies. We consider two problem
settings: predicting the fuel consumption for each flight and
for each week.

4.1 Baseline

Airline companies decide on the amount of fuel on board
based on the estimates made by domain experts (called flight
dispatchers). The experts usually use some empirical rules
such as those depending on the flight altitude or weather in-
formation. The amount of fuel on board is determined by
considering both the expert estimations and the legal con-
straints. We use the estimations by the experts as our base-
line, which we denote by EX-D. The experts always estimate
the amount of fuel one day before the departure date.
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4.2 Prediction models
We define the fuel consumption prediction as a regres-
sion problem. We apply three prediction models: random
forests,2 XGBoost (Chen and Guestrin 2016),3 and deep
neural networks. We apply a standard four-layer feed for-
ward neural network trained with the AdaDelta optimization
method (Zeiler 2012). Rectified linear unit (ReLU) and the
sigmoid function are employed as the activation function of
the hidden layers and that of the output layer, respectively.
We use Keras4 for implementing this model.

4.3 Fuel consumption prediction for each flight
Our first problem setting aims to predict an amount of fuel
consumption for each flight. We consider two prediction
timings: one day before and one week before the departure
date of the flight. The predicted values are expected to be
used for determining the amount of fuel on board or in stor-
age. The prediction made one day before the flight is valu-
able for making a final decision of the amount of fuel on
board, and the prediction made one week before the flight
is useful for foreseeing the degree of future decrease in the
storage. We denote the predictions by random forests, XG-
Boost, and deep neural networks at the timing of one day
before the flight by RF-D, XGB-D, and DL-D, respectively,
and those at the timing of one week before the flight by
RF-W, XGB-W, and DL-W, respectively. The acronyms are
summarized in Table 2.

We use the 47,000 flights from July 2012 to December
2014 for training, and the 7,000 flights from January 2015 to
March 2015 for testing. The feature vectors are constructed
from the information available at each prediction timing. We
also observe that we can obtain accurate predictions of the
number of passengers to some extent by using the informa-
tion available one week before the flight, and therefore we
incorporate the predicted numbers of passengers to build the
fuel consumption prediction models of one week before the
flight. The predictions of the number of passengers are given
by deep neural networks.

We use the relative RMSE for our evaluation measure,
which is the root mean squared error normalized by the
mean of observed values. The actual amount of fuel con-
sumption of each flight is used as the groundtruth. From the
perspective of safety, we should avoid underestimation cases
because an underestimation of the fuel consumption can re-
sult in a crash. Thus, we also evaluate an underestimate ra-
tio, which is the frequency of the cases where the predicted
value of a method is lower than 97% of the actual amount of
fuel consumption.

Table 3 shows the relative RMSE of each method. We
find that all the prediction models outperform EX-D even
though RF-W, XGB-W, and DL-W produce predictions at
the timing of one week before the flight and the experts es-
timate the values one day before the flight. It is also notable
that XGB-D reduces the errors of EX-D by 39.3%. Figure

2http://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html

3https://github.com/dmlc/xgboost
4https://keras.io

-D
-D
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Figure 2: Relative RMSE of fuel consumption prediction for
each flight according to the airport of departure or arrival.
XGB-D outperforms EX-D in 10 out of 12 airports.

2 shows the relative RMSE according to the airport of de-
parture or arrival. We observe that XGB-D outperforms EX-
D in 10 out of the 12 airports, and RF-D is comparable to
XGB-D in most of the airpots. Figure 3 shows the relative
RMSE according to the week. XGB-D and RF-D consis-
tently perform better than EX-D. Table 4 shows the under-
estimate ratios. We observe that the underestimate ratio of
XGB-D is very small although it outputs accurate predic-
tions. Figure 4 shows the underestimate ratios according to
the airport of departure or arrival, and Figure 5 shows those
according to the week. It is shown that XGB-D consistently
achieves small underestimate ratios in all the airports and all
the weeks. In contrast, the predictions given by EX-D are
more likely to be lower than the actual values.

We find effective features by analyzing the model built by
XGBoost. The trained XGBoost model indicates that “de-
parture day of year”, “cosine of departure day of year”, and
“number of passengers” are useful features for fuel con-
sumption prediction. The first two features are helpful to
incorporate seasonality to the prediction, and the last one
is related to the weight of aircrafts. We also discover that
“scheduled departure time” and “scheduled arrival time” are
important features. They affect the amount of fuel consump-
tion because the congestion of runways and that of airways
depend on time, and they cause extra time for take-off and
landing, which consumes an amount of fuel. Another possi-
ble reason is that selection of diversion airports depends on
time; aircrafts have to carry an enough amount of fuel for
the flights to diversion airports, and therefore the selection
of diversion airports affects to the aircraft weight.

4.4 Fuel consumption prediction for each day
Because fuel prices are often highly volatile, airline compa-
nies want to hedge their risks in several ways, including bulk
purchasing. Accurate estimates serve as valuable basic in-
formation supporting such risk hedging decisions. Thus, we
next consider the problem of predicting the total fuel con-
sumption for a particular day and route.

We use the same training and testing datasets for the fuel
consumption prediction for each flight. We obtain the fea-
ture vectors from the information available five month be-
fore the date to build the prediction models. We denote the
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Table 2: Acronyms of each method according to the prediction timing

Method Prediction timing
One day before the flight One week before the flight Five months before the flight

Random forests RF-D RF-W RF-M
XGBoost XGB-D XGB-W XGB-M

Deep neural network DL-D DL-W DL-M
Human experts EX-D - -

Table 3: Relative RMSE of fuel consumption prediction for each flight. All the prediction models outperform EX-D even though
DL-W, XGB-W, and RF-W produce predictions at the timing of one week before the flight.

EX-D DL-D XGB-D RF-D DL-W XGB-W RF-W
0.145 0.119 0.088 0.092 0.120 0.094 0.100

-D
-D
-D
-D

Week

Figure 3: Relative RMSE of fuel consumption prediction for
each flight according to the week. XGB-D and RF-D outper-
form EX-D in almost all the weeks.

predictions by random forests, XGBoost, and deep neural
networks at the timing of five month before the date by RF-
M, XGB-M, and DL-M, respectively.

The relative RMSEs are shown in Table 5. Even five
months before the date, XGB-M and RF-M outputs more
accurate predictions than EX-D. The performance of DL-M
is inferior to that of the other methods; we consider deep
neural networks would be too complicated for this setting
because we do not have many features at the timing of five
month before the date. Figure 6 shows the relative RMSE
according to the week; the prediction performance of RF-M
and XGB-M are comparable to EX-D in all the weeks. Fig-
ure 7 indicates the relative RMSE according to the airport of
departure or arrival. XGB-M outperforms the other methods
for almost all the airports. We conclude boosting methods
can be applied to predict day’s use of fuel with better perfor-
mance.

5 Flight delay prediction
The punctuality of operations is one of the most important
indicators in the service quality of airline businesses. In par-
ticular, on-time departures are very important for LCAs be-
cause their flight schedules are very busy in comparison with

Figure 4: Underestimate ratios of fuel consumption predic-
tion for each flight according to the airport of departure or
arrival. The underestimate ratio of XGB-D is less than 1%
for almost all the airports.

traditional full-service airlines and LCAs have very short
turnover times of aircrafts for cost saving; for example, an
aircraft that has just arrived is immediately inspected and
prepared for departure to another airport. Such overloaded
schedules easily make flight delays and they propagate to
subsequent flights to cause further delays.

An important first step to alleviate this problem is to pre-
dict flight delay in advance; in this section, we formulate the
problem as a binary classification problem. It is reasonable
to define this problem as a classification problem because
the on-time performance rating, a common measure of air-
line service quality, is defined as the ratio of flights where
the delay is lower than a certain threshold, and this rating
does not concern the amount of delay time. In this paper,
delayed flights are defined as “flights whose departure time
is 15 minutes behind the schedule,” based on the criteria of
Federal Aviation Administration (FAA).

We apply random forests, XGBoost, and deep neural net-
works to the flight delay prediction problem. The settings of
deep neural networks for this problem are the same as those
for the fuel consumption prediction problem described in
Section 4. We use the same training and testing datasets for
the fuel consumption prediction. We compare three predic-
tion timings, namely, one day before, one week before, and
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Table 4: Underestimate ratios of fuel consumption prediction for each flight. The underestimate ratio of XGB-D is very small
although it outputs accurate predictions.

EX-D DL-D XGB-D RF-D DL-W XGB-W RF-W
0.082 0.002 0.007 0.040 0.030 0.041 0.093

Table 5: Relative RMSE of fuel consumption prediction for each day. Even five months before the date, XGB-M and RF-M
output more accurate predictions than EX-D.

EX-D DL-M XGB-M RF-M
0.071 0.120 0.064 0.070

-D
-D
-D

-D

Week

Figure 5: Underestimate ratios of fuel consumption predic-
tion for each flight according to the week. XGB-D achieves
smaller underestimate ratios than other methods in most of
the weeks.

five months before the departure date, and obtain the fea-
ture vectors from the information available at each timing.
As we did for the fuel consumption prediction, we incorpo-
rate the predicted number of passengers as features for the
one-week-before prediction. We denote the predictions by
random forests, XGBoost, and deep neural networks at the
timing of one day before the flight by RF-D, XGB-D, and
DL-D, respectively, those at the timing of one week before
the flight by RF-W, XGB-W, and DL-W, respectively, and
those at the timing of five months before the flight by RF-M,
XGB-M, and DL-M, respectively. We apply an area under
the ROC curve (AUC) as the evaluation measure.

Table 6 shows the AUC score of each method at each pre-
diction timing; although the AUC scores of DL-D, XGB-D,
and RF-D are over 0.6, those of the other methods are below
0.6. This result indicates that the information available at the
timing of one month before or five months before the flight
is not enough to predict the flight delays.

By investigating the trained models, we find that “fuel on
board” and “number of passengers” are important features,
which are available only at the prediction timing of one day
before the flight. The lack of them would be one of the rea-
sons for the poor performance of the predictions at the other
timings. It is also observed that “scheduled departure minute
of day” is an efficient feature for flight delay prediction. We

-M
-M
-M

-D

Figure 6: Relative RMSE of fuel consumption prediction for
each day according to the week. RF-M and XGB-M demon-
strate comparable performance to EX-D in all the weeks.

plot the relationships between the “fuel on board,” “the num-
ber of passengers,” and “scheduled departure minute of day”
on Figure 10. From this figure, we observe that the delayed
and the on-time flights are clearly separated by these fea-
tures.

Figure 8 shows the AUC scores of DL-D, XGB-D, and
RF-D according to the airport of departure of arrival. We
find that our prediction models achieve an AUC over 0.75
for NRT and NGS. Figure 9 illustrates the AUC scores for
NRT and NGS according to the week. Our methods achieve
an AUC of over 0.8 in several weeks. We thus conclude
that our flight delay prediction models using the informa-
tion available at one day before the flight are effective for
such specific airports and weeks.

6 Conclusion
We conducted some studies on the feasibility of applying
predictive modeling methods for low-cost airline companies
to achieve cost saving and improve service quality. We pre-
dicted the amount of fuel consumption to save cost, and
flight delay to enhance service quality. Because the airline
companies can take different actions according to the tim-
ing of the prediction, we consider three prediction timings:
the day before the departure reflected the state where all
the reservations are almost perfectly collected, the week be-
fore the departure reflected the state where some of reser-
vations have not yet been collected, and five months before
the departure reflected the state where there were no reser-
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Table 6: AUC scores of the flight delay predictions. The predictions at the timing of one day before the flights (DL-D, XGB-D,
and RF-D) outperform the predictions at the other timings.

DL-D XGB-D RF-D DL-W XGB-W RF-W DL-M XGB-M RF-M
0.647 0.634 0.604 0.584 0.573 0.560 0.500 0.542 0.534

Figure 7: Relative RMSE of fuel consumption prediction for
each day according to the airport of departure or arrival.
XGB-M outperforms the other methods for almost all the
airports.

-D
-D

-D

Figure 8: AUC scores of the flight delay prediction accord-
ing to the airport of departure or arrival. The prediction mod-
els achieve an AUC over 0.75 for NRG and NGS.

vations. Our regression model predicted the amount of fuel
consumption for each flight with a relative RMSE of 8.8%.
Our model performed better than human flight dispatchers
and reduced their prediction errors by 39.3%. Using the
flight and the reservation information, our binary classifier
achieved an AUC of over 0.75 for several routes in the one-
day-before predictions of the flight delays.

Some promising directions for future work are described
below. To predict the fuel consumption and flight delay, the
flight data recorder data, meteorology information, and fly-
ing would be helpful to be used in combination with the
passenger and the reservation information. With the goal
of increasing sales, it would also be worthwhile to study a
method for recommending seats or in-flight purchases using
individual customer information.
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