Proceedings of the Twenty-Eighth AAAI Conference on Innovative Applications (IAAI-16)

A Hidden Markov Model Approach to Infer Timescales for
High-Resolution Climate Archives

Mai Winstrup
University of Washington, 4000 15" Ave NE, Seattle, WA 98195, USA

Now at: University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
mai@gfy.ku.dk

Abstract

We present a Hidden Markov Model-based algorithm for
constructing timescales for paleoclimate records by annual
layer counting. This objective, statistics-based approach has
a number of major advantages over the current manual
approach, beginning with speed. Manual layer counting of a
single core (up to 3km in length) can require multiple
person-years of time; the StratiCounter algorithm can count
up to 100 layers/min, corresponding to a full-length
timescale constructed in a few days. Moreover, the
algorithm gives rigorous uncertainty estimates for the
resulting timescale, which are far smaller than those
produced manually. We demonstrate the utility of
StratiCounter by applying it to ice-core data from two cores
from Greenland and Antarctica. Performance of the
algorithm is comparable to a manual approach. When using
all available data, false-discovery rates and miss rates are 1-
1.2% and 1.2-1.6%, respectively, for the two cores. For one
core, even better agreement is found when using only the
chemistry series primarily employed by human experts in
the manual approach.

1. Introduction

Over the last 2 million years, Earth’s climate has oscillated
between ice ages and warm periods with climate similar to
present. The ice ages lasted approximately 100,000 years,
while average duration of the warm periods was only
10,000 years. During the last ice age, immense ice sheets
existed in the high northern latitudes, and covered large
parts of North America. Approximately 11,700 years ago,
the climate abruptly changed to current-day conditions,
with the full transition completed within a few decades
(Steffensen et al. 2007). By studying records of past
climate, and investigating how and why climate has varied
in the past, one can obtain a wealth of information on the
intricate workings of the climate system. Such
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understanding is necessary also for making accurate
predictions of future changes in a warming climate.

Timescales are fundamental to the utility of paleo-
climatic records; without knowledge of the corresponding
age, a measurement has little or no scientific value.
Accurate timescales are needed for investigating
periodicity and rapidity of past climate events, as well as
for comparing climate records from different locations.
They hold clues on the relative timing and spatial pattern
of past climatic changes, which provides invaluable
information on causes and mechanisms for these events.
Consequently, major efforts in past climate research go
into developing timescales for climate archives. The best
method for constructing a timescale depends on properties
of the particular archive, with depth and time resolution
being key parameters. Under beneficial conditions, several
types of archives (ice cores, sediment cores, tree rings,
corals, etc.) may have sufficient resolution for annual
layers to be identified, allowing a high-precision timescale
to be constructed. We here focus on ice core data, but the
method described is relevant also for other types of
paleoclimate records.

The ~3km long ice cores drilled through the Greenland
and Antarctic ice sheets contain excellent climate records
informing  about past temperature, atmospheric
composition (including greenhouse gasses), volcanic and
solar activity, among others. Each year, a layer of snow is
deposited on the ice sheet surface, and it is gradually
buried by the continuous snowfall. The snow quickly turns
into incompressible ice, and gravity causes the ice to
slowly move towards the ice sheet margins, where it
eventually is removed by surface melt and iceberg calving
(Fig. 1A). This process causes the ice layers to stretch and
become thinner with depth, thereby progressively
decreasing the temporal resolution of the ice core data.
Greenland deep ice cores usually cover the last 100-
200,000 years (see e.g. NEEM community members 2013),



while the longest Antarctic ice cores span more than
800,000 years but with correspondingly lower temporal
resolution (Jouzel et al. 2007). Slowly melting sticks of the
ice core, numerous high-resolution chemistry series are
obtained by  continuously  measuring  impurity
concentrations in the melt-water stream, resulting in an
effective data resolution of less than lcm. If resolution
permits, these ice-core chemistry series display annual
cycles reflecting seasonal changes in atmospheric
composition and circulation patterns. Black carbon, for
example, is produced by forest fires and concentrations
peak in summer, while sea-salt aerosols (e.g. Na) reflect
the amount of surrounding sea ice and reach a maximum in
winter (Fig. 1B).

Current practice in the paleoclimate community is to
construct annual-layer timescales by laborious manual
layer counting (Rasmussen et al. 2006; Andersen et al.
2006; Sigl et al. 2015a). The task is non-trivial; inter-
annual variability in the ice-core chemistry series is large,
and oftentimes the annual signal is obscured by external
events. Volcanic eruptions, for example, give rise to highly
elevated sulfur levels that overprint the annual sulfur
cycles (Fig. 1B, lowermost data series). Preferably, layer
decisions should therefore be based on parallel analysis of
multiple chemistry series, while employing domain
knowledge on seasonal timing of peaks and troughs in the
various series and the variability of layer thicknesses.
During development of the Greenland Ice Core
Chronology 2005 (GICCO0S5), a total of more than 60,000
layers were counted by hand (Svensson et al. 2008).
Development of this timescale was a several-year effort for
multiple experienced researchers; each investigator
counted and recounted layers independently, and
subsequently the layer counts were reconciled in discussion
between all investigators. In total, an estimated 5-10 man-
years were spent counting and reconciling layers (A. M.
Svensson, pers. comm.). Inter-annotator agreement was
sometimes quite poor, with discrepancies up to 10% over
particularly difficult sections (Rasmussen et al. 2006).
Uncertainty on the timescale was estimated by introducing
so-called uncertain layers, each counted as '2t)2 year.
Uncertain layers were assigned when e.g. the annual signal
was present only in some chemistry series, the relative
timing of peaks in the various series was atypical, in
sections with data gaps, or if agreement between
investigators could not be reached (Andersen et al. 2006).
The GICCO5 uncertainties range from +1-2 years over the
last 2000 years, 1-2% during the last 10,000 years, and
increasing to 5% thereafter.

There have been some previous attempts to automate the
layer counting process (e.g. Wheatley et al. 2014;
McGwire et al. 2011), but they have had limited success. A
primary issue is the large irregularity of the annual layer
signal, which confounds both manual and automated
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Figure 1: A) Schematic ice sheet with an ice core. As ice slowly
moves from the central parts of the ice sheet towards the margin,
layers of ice (grey horizontal lines) are progressively stretched.
An ice core therefore has thicker annual layers for recent times
(near surface), and thinner layers with increasing depth and age.

B) Chemistry series from a Sm section of the Greenland NEEMS1
ice core, covering the age interval 1795-1815 AD. StratiCounter
layer counts (grey bars) mark the beginning of a calendar year.
Large volcanic eruptions give rise to high sulfur concentrations
(non-sea-salt S; lowermost data series). During this period, two

large eruptions took place, including Tambora (Indonesia,
1815A4D), traces of which are visible at a depth of 61.8m.

approaches. In face of this, obtaining objective results that
match the accuracy of manual layer counting by trained
personnel is a real challenge. Most methods developed so
far fall short of this goal, primarily because their
framework is not designed to incorporate the wealth of
explicit and implicit knowledge employed by human
experts when counting layers in a core.

In this paper, we describe and demonstrate a Hidden
Markov Model-based algorithm called StratiCounter that
automates the arduous decision-making process of annual-
layer counting. StratiCounter is computationally efficient;
on a single chemistry series, it can count up to 100 layers
per minute on a 2015 laptop, with further efficiency gain if
expanded to parallel processing. The time spent increases
linearly with the number of chemistry series. Ignoring
various complexities (GICCO5 was, for instance,
constructed by piecing together sections from several
cores), this would amount to the entire GICC05 timescale
being produced in a few days, instead of a several year-
long project occupying multiple researchers.

As input, StratiCounter uses multiple chemistry series
with annual cycles and an initial set of layer boundaries; it
outputs probabilistic age estimates along the core, together
with the most likely layer boundaries. StratiCounter
mimics a manual approach by incorporating domain



knowledge and mirroring manual
procedures. Main features are:

1) Appearance of annual layers in the data is described in
terms of their varying shape and layer thicknesses.

It leverages information from multiple co-registered
chemistry series containing an annual signal, thereby
greatly improving the accuracy of the resulting
timescale.

Layers are inferred simultaneously based on
information contained in a complete core section, hence
all data assist the correct identification of fuzzy layer
boundaries.

To evaluate the performance of StratiCounter, we use
manual layer counts as chronological reference, while
recognizing that these layer counts are not really perfect.

A statistical layer-counting approach has several
advantages over a manual approach. Obvious advantages
are the lessened burden of manual labor and the objectivity
of the outcome. An additional benefit is a rigorous
definition of wuncertainties. Few manually-counted
timescales have uncertainty estimates, and those that do
exist are very subjective. To compensate for the
subjectivity, total uncertainty is often approximated as
linearly increasing with depth. For example, the age
uncertainty of GICCO5 was derived by summing the
contribution from all encountered uncertain layers. This
was later found to be a very cautious uncertainty estimate
that, while probably reasonable on shorter timescales (100-
1000 years), grossly overestimates the accumulated age
uncertainty at large depths (Buizert et al. 2015). Assuming
the inherent uncertainty of the counting procedure to be a
random process, the increase in uncertainty ought to
resemble a random walk, i.e. increase as the square root of
age. Uncertainty estimates from an objective procedure
that is meticulously based in statistics have potential to
reflect the accumulated age uncertainties at larger depths
more accurately, and thereby reducing them. As a result,
confidence intervals produced by StratiCounter are
significantly smaller than their manual counterparts.

Given the subjectivity of manual layer counting, there is
a risk of unconscious bias towards previously established
timescales, which may or may not be accurate (Sigl et al.
2015b). Of course, bias may also occur in an automated
approach, but the risk of unconscious bias is less. The
researcher running the code is forced to specify
assumptions explicitly, thereby encouraging scrutiny of
their validity. If, for example, one is using exogenous
arguments to constrain the algorithm to produce a specific
age at a given depth, these assumptions should be
consistent with an original unconstrained timescale to
within the known uncertainties.

Algorithms excel in exploiting very large quantities of
data, thereby allowing a more data-intensive approach than
a human expert. The first manually-counted ice-core

layer-counting
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chronologies relied on the annual signal in a single data
series (Hammer et al. 1978). With improvement of data
extraction techniques, the importance of forming a
coherent picture of the annual layering based on multiple
chemistry series has become increasingly apparent
(Rasmussen, Svensson, and Winstrup 2014). A recent
revolution in measurement techniques has resulted in large
quantities of high-resolution chemistry data available for
layer counting. In one lab, for example, ice cores are
routinely analyzed for 30+ chemical components (J.
McConnell, pers. comm.). Most of these display an annual
signal, and thus contain age information, but it is
intractable to use them all during manual layer counting, so
generally only the best 3-5 chemistry series are employed.
Even a few series can be difficult to manually analyze in
parallel, and consequently there is a tendency to select (not
always consciously) a single chemistry series as the
“master” and consult the remaining data only when in
doubt. In contrast, an automated approach is able to extract
information from the complete data, thus potentially
improving the resulting timescale.

A single-chemistry-series version of StratiCounter was
described previously in the geoscience literature (Winstrup
et al. 2012). Here, we describe a mature version of the
algorithm that can employ multiple chemistry series with
annual signal.

2. The StratiCounter Algorithm

We use the term “annual layer” for the ice-core segment
corresponding to a year, i.e. each data point is part of
exactly one layer. This is in contrast to the general usage of
the term in a manual layer-counting context, where it refers
to a layer boundary. Rather than looking for discrete layer
boundaries, we wish to infer the most likely layer at each
depth along the core. This can be framed as a hidden-state
problem, with the states being enumerated layers assigned
to discrete depths, and it can be solved using the existing
framework of Hidden Markov Models. This is the
approach taken in StratiCounter.

At all depths, we wish to find the probability distribution
of layer state, with each annual layer identified by
consecutive numbering from beginning of the data series.
Such probability distribution contains information on the
most likely age, as well as a confidence interval for the age
estimate. We use the notation S; = j to indicate that the
layer state is j at discretized depth t, and denote by 7;(j)
the probability of being in layer j at ¢, when conditioned on
the observed data (04.7) and employed model (6):

7e() = P(Se = jlo1r, 6) (Eq. 1)



Layer thicknesses tend to be quite regular. Given the
frequent ambiguity of the annual layer signals, this
knowledge is important to include in the algorithm. We can
impose a layer thickness probability distribution p(d) as
prior for the thickness of each layer, and efficiently
calculate the probabilities in Eq. 1 using an adapted version
of the Forward-Backward (FB) algorithm for Hidden Semi-
Markov Models (HSMM). The specific variant of HSMM
used here is also called an explicit duration HMM. This
framework is useful since the problem can be reformulated
as inferring the hidden state (i.e. layer number) of each
data point, with the succession of states being a (fully
predictable) Markov chain process, and with a prescribed
prior for the duration of each state.

Two main inputs to the FB algorithm are the layer
thickness probability distribution, p(d), and estimates of
the likelihood that data segment o, .;, exactly constitutes a
complete annual layer. We use similar notation as Yu
(2010); we denote this likelihood b;(0;,.,). and use two
square brackets to indicate that the layer starts and ends
exactly at t; and t,, respectively:

bj(otlztz) = P(0t1:t2 | Sity:ts) = J,0) (Eq.2)
All layers are assumed to be produced by the same process,
so the dependence on j can be omitted. The data point o,
may be a vector, and may thus contain values
corresponding to multiple chemical species measured in
the ice core at depth t. In section 2.2, we describe a way to
compute these probabilities.

The general forward (a) and backward (f) equations for
explicit duration HMMs are (Yu 2010):

a.(j,d) = P(S[t—d+1:t] =J, 01:t|6)
= ZiES\{j}Zd’ED a_q(i, d')aijpj(d)bj(ot—d+1:t)

B:() = P(0t+1:T|5t] =]"9)
= Yies\y 2a'ep 4iDi (A )b (044 1.¢4a7)Beyar (D

Here, a;; is the state transition probability, i.e. the
probability of transitioning from state i to state j, and S
and D denote the set of all possible states and durations,
respectively. The notation Sy = j indicates that layer j
ends at ¢, and similarly we will use Sj; = j to imply that
layer j starts at t. For application to annual layer counting,
several simplifications can be made. Most importantly, the
Markov chain describing the changes in state along the
data series is no longer a proper Markov chain, since layers
are simply enumerated consecutively down the core
without skipping. It follows that:

. 1,
)= {o,

j=i+1
otherwise

a;j = P(S[t+1 =j 15y
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Further, layer duration is assumed to be independent of
layer number, i.e. p;(d) = p(d). Here, p(d) is taken to be
a log-normal distribution (Andersen et al. 2006), however
the subsequent equations do not depend on this choice.
Introducing the notation &,(j) = Ygrep @:(j,d"), the
forward and backward equations can be reduced to:

a:(j,d) = p()b(0—g41.0)%—q( — 1) (Eq. 3)
B:() = Xarepp (@) b(0411.444) Bera’ G+ 1) (Eq.4)

The following entities, which include the desired
probabilities 7;(j) (Eq. 1), can now be calculated:

n:(,d) = P(S[t—d+1:t] =/ 01:T|0) = a;(j,d)B:(j) (Eq. 5)

ve() = P(S; = j,01.716)
=Y () + P(St] =] 01:T|0) - P(S[t+1 =J, 01:T|9)
= Y1) + 2aep e (G, d) — Xaepn: (G — 1, d)  (Eq. 6)

7:(J) = P(S¢ = jlo1.1,0) = y:(j)/P(01.7|0) (Eq.7)
P(0,.r|0) = Zjes P(S; =j,0.710) = Zjes]’t(f)

The equations (2-7) are implemented in log-space to
prevent underflow.

To allow for comparison with manual counts, a
constrained version of the Viterbi algorithm is
subsequently used to translate the FB age distributions,
7:(J), into a consistent most likely set of layer boundaries
(Winstrup 2011). The Viterbi algorithm uses the same
model parameters, and is constrained to find the same total
number of layers as the FB algorithm. StratiCounter output
comprises the full FB age probability distributions as well
as the most likely set of layer boundaries.

2.1. Boundary Conditions

To compute the forward and backward variables (Eq. 3-4),
boundary conditions are required for the state of the system
before and after the observed data.

As initial condition for the forward variable, the
observed data always starts in layer 1, i.e. S;—; = 1.
Starting location of this first layer is given as a probability
distribution. We have no knowledge about data values
outside the available observations, and thus b(0,_z41.;) =
1 for T < 1. The boundary condition for j = 1 reads:

a,(0) =P(s;=0[9), T<1 (Eq. 8)
As boundary condition for the backward variable, the user
can choose one of the following two options: The general
assumption is no prior knowledge on the total number of
layers, i.e. state of the system at and after 7. This leads to:



vji: B.(j) =1, =T
This boundary condition is independent of j, hence B;(j)
will be independent of j for all t.

Alternatively, the algorithm can be deployed with age
constraints. Some volcanic eruptions emit large amounts of
sulfuric acids, which can be transported very far from the
eruption site. At the poles, the volcanic sulfur is deposited
with the snow, thereby creating a distinct marker horizon
in the ice core data. For recent times, historical eruptions
produce depth-age marker horizons that can help validate
the output of the algorithm and/or constrain its operation.
Assuming that a data section starts and ends at depths
corresponding to such age markers, the total number of
layers in the section is known. Denoting this number J, the
corresponding boundary condition reads:

B() = {(])-’ J=] =T

otherwise’

2.2. Statistical Description of an Annual Layer

Annual layers tend to display large variability in shape,
which stems from a multitude of factors: Input of
impurities to the atmosphere varies significantly from year
to year, as do the large-scale weather patterns responsible
for their transport to Greenland and Antarctica. The
majority of impurities are deposited with the snow, causing
the annual signals to also depend on the timing of the
snowfall events. Finally, extreme events, such as volcanic
eruptions, may occasionally overprint the annual signal.

To make the algorithm easily applicable to a wide range
of chemistry series, StratiCounter first extracts a layer
template based on rough manual layer counts of a section
of the core. For each chemistry series, the layer template
consists of a mean shape, m(t"), as well as the 1! principal
component of the residuals from the mean shape, r(t"). For
each chemistry series, a layer is modelled as:

y) =m(t) +A-r(t') + e(t), 0<st'<1

We use a hierarchical approach to increase the flexibility
of this layer description: The value of 4 is allowed to differ
from year to year, but assumed to belong to a normal
distribution, A ~ N(Ay, ®). The error component &(t") is
assumed white noise with £(t") ~ N(0,52). Under these
conditions, the likelihood that a given segment of a
chemistry series exactly constitutes an annual layer can be
computed using Bayesian linear regression (Bishop 2006).
Assuming each chemistry series to be independent, the
corresponding b-value (Eq. 2) is found by multiplication of
their likelihoods.

To improve the layer description, derivatives of the
chemistry series are included as additional data series.
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Layer parameters are tied between chemistry series and
their derivatives, and are based on both. As the two data
series are not independent, their layer likelihoods are
combined to a single mean value. By including derivatives,
information on the location of peaks and troughs within a
layer is emphasized. Furthermore, the error structure
becomes less rigid, since the error components on both
data and derivatives are modelled as white noise.

2.3. Estimating Model Parameters

To describe the annual layers in the full data set of n
chemistry series, we have n templates (each consisting of
two shapes) and five parameters: two parameters
describing the log-normal layer thickness distribution (pgy
and 0,) and three parameters describing the expression of a
layer: A, (nx1 vector), ® (nxl vector), and o, (nxl
vector). The templates, which provide the basic layer
shapes, are held constant throughout the run of the
algorithm, whereas the parameters are allowed to vary
slowly with depth.

We use the Expectation-Maximization (EM) algorithm
to optimize the parameter values based on the outcome of
the FB algorithm. In each iteration, an optimized set of
Maximum-Likelihood (ML) parameter values are
computed (Winstrup 2011; Winstrup et al. 2012). The FB
algorithm is run iteratively with these as parameters until
convergence, or until a maximum iteration number is
reached.

2.4. Implementation in Batches

The algorithm is run batch-wise down the chemistry series,
with the length of each batch adjusted to contain
approximately some predefined number of layers (default
is 50) and having a slight overlap (up to 10%) with the
previous batch. The quoted value of ~50 layers was chosen
to provide a reasonable amount of data for the EM-
optimization routine to converge.

Some information on previous layer locations is passed
from one batch to the next. Upon completion of layer
inference in a batch, an appropriate starting point for the
next batch is selected immediately after the most
unequivocal layer boundary (high values of ¥;471:(j,d))
near the end of the batch. The variable 1.(j,d) also
supplies the boundary condition for probable start locations
of the first layer in the new batch (Eq. 8). In this way, the
next batch is partly informed by data in the current batch,
thereby improving the inference of layers in the overlap
section.

For the first batch, an initial set of parameters is found
based on a rough set of manual layer counts. For
subsequent batches, ML estimates from the previous batch
are used as starting point for the iterations of ML
parameters for the current batch. Due to stability in layer



characteristics, convergence usually occurs after a few
iterations (<4).

This procedure allows the layer characteristics to slowly
evolve with depth, as they do in a real core. As an example,
layer thicknesses in an ice core generally decrease with
depth due to ice flow (Fig. 1A), so inferring layers in the
entire core at once would violate the assumption that the
layer thickness distribution is static. Similarly, other
aspects of the annual layer signature may change over
time, i.e. with depth. Hence, the batch size must be chosen
to provide the best trade-off between containing a
sufficient number of layers to provide reasonable estimates
of the model parameters, while also being sufficiently short
that the layer characteristics can be assumed constant
within each batch.

3. Performance Evaluation

It is not straight-forward to evaluate the performance of the
algorithm. The only direct evaluation available is
comparison to a set of manual counts, but these are
themselves associated with some uncertainty. A direct
measure of their uncertainty based on inter-annotator
agreement is usually unattainable; Standard practice is to
focus on a reconciled set of layer assignments, effectively
causing the initial sets of annual layers independently
labeled by multiple experts to no-longer be available for
analysis. Layer marks may also not be placed very
accurately within a year, since this is generally not the
main goal in manual layer counting. An objective
comparison of the performance of the algorithm relative to
manual counts is further complicated by the fact that the
latter may have been informed by additional information,
such as eruption ages for historical volcanoes. While it is
possible also to incorporate such information into
StratiCounter, this has not been done in the experiments
described here.

We evaluate the similarity to a set of manual counts by a
layer-to-layer comparison, inferring false-discovery rates
and miss rates. Given that the precise location of layer
boundaries might differ, we evaluate the number of
inferred layer boundaries within a running weighted
window, and note areas of discrepancy. A measure for the
overall dissimilarity, D, is calculated as the square-root of
the sum of the squared false-discovery and miss rates.

To obtain a baseline against which the obtained false-
discovery and miss-rates can be compared, we generated
10,000 sets of random layer markers adhering to the same
log-normal distribution as the manual layer assignments.
The random layer markers provided false-discovery and
miss rates that were approximately normally distributed
with mean 5.7% and standard deviation 0.5%; the

4058

corresponding D-values were normal distributed with mean
8.0% and standard deviation 0.5%.

Note that this performance evaluation is based on the
derived layer boundaries, and not the full probability
output of the FB algorithm. While the most likely set of
layer boundaries may differ from the manual layer counts,
they may agree within the derived confidence interval. This
is not accounted for here, and the calculated D-values may
hence overestimate the actual differences.

In some cases, known ages of volcanic eruptions may
serve as a second check on the obtained layering. While
they do not allow for individual layer comparisons, they do
provide a powerful check on the obtained ages at depths
corresponding to volcanic eruptions. Yet this comparison
can be difficult since volcanic eruptions happen frequently,
and it may not be possible to tell them apart based on the
data. Annotation of a sulfur spike to a specific eruption is
often based on either a match to other layer-counted cores
or directly on the layer-counting results. Further, it may
take the volcanic sulfur a few months to a few years to
reach the polar regions. Consequently, the sulfur increase
observed in the ice core data may be delayed by up to a
couple of years relative to the eruption.

4. Data

We use chemistry data from two ice cores drilled
respectively in Greenland (NEEM-2011-S1, hereafter
NEEMSI1) and Antarctica (WAIS Divide Core, hereafter
WDC), and focus on the period 1258-1815 AD. This
section is demarcated by elevated sulfur levels caused by
two large eruptions. Data are available online, along with a
reliable set of manual layer counts, with the NEEMSI
layer counts tied to GICCO5 (Sigl et al. 2013; Sigl et al.
2015b). For the selected period, known ages of large
historical volcanic eruptions reduce uncertainties on the
manual timescales for the two cores. The manual timescale
uncertainties are therefore considered negligible.

We excluded chemistry series that replicated the annual
signal in other data series, and ended up with seven
different chemical series both for NEEMS1 and WDC. The
employed chemistry series were: black carbon, Br (WDC
only), HNOs; (NEEMSI1 only), NH4, Na, non-sea-salt Ca,
non-sea-salt S, and non-sea-salt-S-to-Na ratio. In the
format provided online, long-term trends had been
removed and data was normalized. To enhance the layer
signal additionally, data was preprocessed by computing z-
scores over a lm running window, and averaged to 2cm
resolution.



5. Experiments

5.1. Dependency on Input Data

We first ran StratiCounter for NEEMS1 and WDC, while
varying the number and type of chemical series used for
timescale inference, and recorded false-discovery rates and
miss rates. These rates are dependent on the performance
of the algorithm, as well as on the predictive ability of the
employed chemistry series(s).

Various chemistry series convey different information,
and display different types of errors. All StratiCounter
outputs were distinctly different from a random distribution
with correct layer thickness distribution. When using a
single chemistry series to obtain annual layering, we
observed a tendency towards counting too many layers
rather than too few: one chemical series resulted in a
timescale with a false-discovery rate as high as 33%,
whereas the maximum miss rate was 7.3%. Minimum
values of false-discovery and miss rates obtained for single
chemistry series were 1.3% and 0.3%, respectively, and
minimum D-values were 2.1% for NEEMSI and 12.1% for
WDC. However, the same chemistry series did not work
equally well at the two ice core locations, so no general
conclusion can be drawn regarding the best chemistry
series to use for annual layer dating.

To explore the added value of incorporating multiple
data series, we did an exhaustive search of the layering
obtained when combining an increasing number of
chemistry series. Overall, incorporating more chemical
series resulted in increased accuracy, although the amount
depended on the selected chemistry series. For NEEMSI,
the median of the D-values showed rapid decrease when
including the first extra chemistry series (from 14% (one
series) to 3.2% (three series)), but with diminishing returns
after including more than four chemistry series. The same
tendency was observed for WDC, although the values were
a little higher overall (from 18% (one series) to 5.0% (three
series)). For WDC, best agreement with manual counts was
obtained when using all seven chemistry series. For
NEEMSI, the best agreement was achieved when using
three chemistry series (Na, non-sea-salt S, and non-sea-
salt-S-to-Na ratio). These three series were among the
primary ones employed in the manual approach (Sigl et al.
2013), this possibly causing the high similarity of the
resulting timescales.

5.2. Evaluation of the All-Chemistry Timescales

For the timescales constructed with the full set of seven
chemical series, all batches had converged within less than
four iterations. The false-discovery and miss rates for
NEEMS1 were 0.98% and 1.6% (D = 1.9%), and 1.2% and
1.2% (D = 1.6%) for WDC, much smaller than obtained for
any of the chemistry series individually. These values are
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within the uncertainty range of manual layer counts for
high-quality data, when not including age information from
volcanic eruptions.

To further evaluate the timescales for the two cores, we
considered the derived ages at the depth coinciding with a
volcanic sulfur peak previously estimated by manual layer
counting to occur in 1258 AD (Sigl et al. 2015b). Since the
beginning of our selected depth interval was demarcated by
sulfur from the 1815 AD Tambora eruption, this allows a
check on the accumulated number of layers in the interval.
The obtained 95% confidence intervals are 1258-1263 AD
for NEEMSI1, and 1255-1262 AD for WDC, with the most
likely ages being 1261 and 1258 AD, respectively. For
both cores, the ML age estimates are 3 years or less away
from that obtained manually, and the manual estimate is
covered by the associated confidence intervals.

6. Future Work

The two data sets employed here are nearly ideal for
annual layer counting. StratiCounter also performs well for
data with less-distinct annual layers (Winstrup et al. 2012;
Vallelonga et al. 2014; Sigl et al. 2015a). Difficult data,
however, tend to confound both manual and automated
approaches alike, making it hard to evaluate performance
of the algorithm by comparing to manual counts.

Given their importance for correctly identifying an
annual layer, layer templates and associated layer
likelihoods are main focus points for further development
of the algorithm. Currently, the layer templates are held
constant for the entire core. This is likely not a reasonable
assumption when dealing with longer core sections, where
layers may have formed under different climate conditions.
We are working on introducing more flexibility in the layer
template and layer likelihood computations, which will
allow these to better mimic the processes responsible for
creating the layer signature in the data.

To a large degree, manual layer counting is performed in
sections step-wise down the core, as in StratiCounter.
However, a human expert will often go back and forth
between sections, matching the appearance of layers across
them. In contrast, the current implementation of
StratiCounter optimizes the model parameters describing
layer characteristics for each batch individually. We can to
some degree imitate the manual passing of information
between batches by introducing priors on the model
parameters. With priors based on layers in previous
batches, model parameters in adjacent batches will be
correlated, and layer characteristics will be forced to
change more slowly with depth. This feature is under
development.

Additionally, the calculation of confidence intervals
must be revised to include uncertainty on the employed



model parameters. When estimating uncertainty bounds,
the algorithm currently assumes known model parameters,
and consequently these bounds are too narrow. This is
particularly evident when running StratiCounter on data
that do not contain sufficient information to produce good
estimates for the model parameters. By including
parameter uncertainty, we expect to achieve layer-counted
timescales with more reliable confidence intervals.

The StratiCounter code can be downloaded from:
www.github.com/maiwinstrup/straticounter.
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