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Abstract 
An estimated 17.5 million people died from a cardiovascu-
lar disease in 2012, representing 31% of all global deaths. 
Most acute coronary events result from rupture of the pro-
tective fibrous cap overlying an atherosclerotic plaque. The 
task of early identification of plaque types that can poten-
tially rupture is, therefore, of great importance. The state-of-
the-art approach to imaging blood vessels is intravascular 
optical coherence tomography (IVOCT). However, current-
ly, this is an offline approach where the images are first col-
lected and then manually analyzed a frame at a time to iden-
tify regions at risk of thrombosis. This process is extremely 
laborious, time consuming and prone to human error. We 
are building a system that, when complete, will provide in-
teractive 3D visualization of a blood vessel as an IVOCT is 
in progress. The visualization will highlight different plaque 
types and enable quick identification of regions at risk for 
thrombosis. In this paper, we describe our approach, focus-
ing on machine learning methods that are a key enabling 
technology. Our empirical results using real OCT data show 
that our approach can identify different plaque types effi-
ciently with high accuracy across multiple patients. 

Introduction   
Cardiovascular diseases are the leading cause of death 
worldwide. An estimated 17.5 million people died from a 
cardiovascular disease in 2012, representing 31% of all 
global deaths. Of these deaths, an estimated 7.4 million 
were due to coronary heart disease and 6.7 million were 
due to stroke (Mendis 2011). The underlying disease pro-
cess in the blood vessels that results in coronary heart dis-
ease (heart attack) and cerebrovascular disease (stroke) is 
known as atherosclerosis.  It is a complex pathological 
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process where fatty material and cholesterol are deposited 
inside the lumen of medium and large-sized blood vessels 
(arteries). These deposits (plaques) cause the inner surface 
of the arteries to become irregular and the lumen to be-
come narrow, making it harder for blood to flow through. 
Further, the plaque can rupture, triggering the formation of 
a blood clot, which may eventually lead to disease.  
 To treat atherosclerosis, we must first have access to an 
imaging technique with suitable resolution. As we describe 
in the next section, the recently approved intravascular 
optical coherence tomography (IVOCT) approach fulfills 
this need. In IVOCT, a probe is inserted into a blood ves-
sel. As the probe moves through the vessel, it collects im-
ages of the vessel wall. These images are subsequently 
analyzed by experts to identify at-risk regions. 
 A major issue when working with IVOCT, however, is 
that it can produce more than 500 image frames in a single 
scan, resulting in an explosion of image data. This can be 
difficult and labor-intensive to analyze manually, taking up 
to one hour of examination for each frame by a trained 
analyst. This often precludes measurements from every 
frame, and plaque classification is not even done because it 
is infeasible in terms of time. Further, this manual process 
is also prone to error. In prior work (Lu et al. 2012), our 
group has found evidence of up to 5% intra and 6% inter-
rater variability among analysts looking at these images.  
 The goal of our work is to enable an effective detection 
and diagnosis of atherosclerosis, which is a necessary pre-
cursor for effective treatment. We do it in three ways: (i) 
reduce the effort involved, (ii) improve the accuracy of 
high-risk plaque identification and (iii) make the diagnosis 
available as early in the process as possible. The preva-
lence of atherosclerosis means achieving these goals can 
have a major impact on health worldwide.  

Proceedings of the Twenty-Eighth AAAI Conference on Innovative Applications (IAAI-16)

4047



We anticipate fulfilling our goals in two steps. In the 
first step, reported in this paper, we develop an automated 
method to process single frames generated by IVOCT 
scans. We demonstrate that it is accurate and efficient on 
real IVOCT data, it outperforms a previously published 
baseline (Ughi et al. 2013), and the output can be used by 
analysts to greatly reduce their annotation effort. In the 
second step, our goal is to integrate this approach into a 
real time visualization that accompanies an IVOCT scan. 
We would like to produce 3D images as in Figure 1, by 
stacking the output of multiple 2D frames. These images 
will be annotated with different detected plaque types, and 
will be used for rapid identification of high-risk regions for 
intervention and management and guidance. 

In the rest of the paper, we first describe IVOCT. Next, 
we describe how we extract meaningful features from 
IVOCT images for our automated analysis, followed by a 
description of our classifier. We then describe empirical 
results that illustrate the performance characteristics of our 
approach, and discuss current limitations and future work. 

Figure 1: Example of desired 3D output (using current 
automated approach’s output).  This will greatly enhance the 
physician’s ability to make (pre)treatment decisions. 

Optical Coherence Tomography (OCT) 
Before OCT was approved, Intravascular Ultrasound (IVUS) 
was used to identify plaques. IVUS has a resolution of ~200 
μm and is able to detect for example, calcium. However, it 
cannot measure the distance between the superficial calcium 
and the lumen, nor can it assess the thickness of calcium due 
to acoustic distortion (Mintz et al. 1995). The underlying 
concept of OCT is similar to that of ultrasound; by measur-
ing the delay time of optical echoes reflected or backscat-
tered from subsurface structures in tissues, we can obtain 
structural information as a function of depth within the 
tissue (Tearney et al. 2012). However, OCT does not pos-
sess the limitations of IVUS. 

In IVOCT we obtain cross-sectional images by inserting 
a flexible imaging probe (catheter) into the blood vessel to 
be imaged.  The catheter has an optical fiber coupled to a 
lens and micro-prism. The micro-prism reflects the OCT 
beam perpendicular to the catheter longitudinal direction 
and captures the light that is back-scattered from that tissue 
(the reflected beam is referred to as an A-Line). The probe 
is then rotated and pulled back. This pullback creates a 
two-dimensional image (referred to as polar or r-θ image) 
by assembling successive A-lines next to each other result-
ing in an image shown in Figure 2b. This image is then 
transformed to Cartesian coordinates to produce the image 
shown in Figure 2c. A typical pullback contains 271 imag-
es covering 54mm and an image contains 504 A-lines. 
 Different tissues have different qualities that influence 
the back-reflectance. The longer the distance traveled, the 
longer the delay in returning to a detector. The delay in the 
returning light from deeper structures compared with shal-
low structures is used to reconstruct images. 
 

 (a) (b) 
 

 
(c) 

Figure 2: (a) Backscattered intensity of a single A-line (b) polar 
(r-θ) image (the red line is the A-line in (a)). (c) the polar image 
converted to the more human readable x-y. 
 
 Since its approval for clinical use, IVOCT has become 
an invaluable tool for vascular assessments due to its high 
contrast and microscopic resolution (5-15 μm), which is 
superior to other in-vivo imaging modalities such as IVUS. 
It has been shown that IVOCT is able to distinguish be-
tween key types of plaque (Yabushita et al. 2002), and aid 
in assessment of new coronary artery stent designs (Lu, 
Gargesha et al. 2012, Wang 2012). These characteristics 
make it ideal for our purposes.  

Our group has access to a large database of manually 
analyzed OCT images obtained in a clinical setting. Images 
were collected on the C7-XR system from St. Jude Medical 
Inc., Westford, MA. It has an OCT Swept Source having a 
1310 nm center wavelength, 110 nm wavelength range, 
50 kHz sweep rate, and ~12 mm coherence length. The 
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pullback speed was 20 mm/s and the pullback length was 
54 mm. Images from this source were used in training our 
machine learning approaches, described below. 

Representing an OCT Image 
In order to build our system, we need to automatically and 
accurately identify different plaque types in OCT images. 
In this section, we describe image characteristics that are 
key to identifying different plaque types. In constructing 
our features we use the qualitative description of the dif-
ferent plaques’ characteristics in prior work (Yabushita, 
Bouma et al. 2002) described below. This also provides the 
ability to interpret results in a meaningful way. 
A fibrous plaque (Figure 3A) has high backscattering and 
the region has relatively homogeneous intensity values. 
We see that the average intensity is high (bright).  Like-
wise, the intensity is not attenuated much along the A-line.
A lipid plaque (Figure 3B) is a low intensity region with 
poorly delineated borders, a fast IVOCT signal drop-off, 
and little or no OCT signal backscattering, within a lesion 
that is covered by a fibrous cap. We see that the intensity 
starts very bright and decreases quickly along the A-line.   
A calcified plaque (Figure 3C) appears as a low intensity 
or heterogeneous region with a sharply delineated border 
(leading, trailing, and/or lateral edges). Calcium is darker 
than fibrous plaque with greater variation in intensity level. 

Based on this description, we construct a set of eight 
(real-valued) features for each pixel in the image. We 
compute these features using a three-dimensional (3D) 
neighborhood centered on the pixel of interest. The third 
dimension comes from neighboring frames (human ana-
lysts will often use adjacent frames when annotating a 
frame). In these features, σ represents the standard devia-
tion of the intensity values within a 3D neighborhood. 
Distance to lumen (Dl):  This is a measure of the distance 
of the center pixel from the lumen border (i.e. the wall of 

the blood vessel).  This feature helps identify lipid plaques 
since they are typically within a fibrous plaque as above. 
Beam penetration (Dd) – This is a measure of the length 
of the beam from the lumen border to the back-border (the 
border beyond which the near infrared beam does not reach 
and the signal is at baseline). It depends on tissue type, 
thus can distinguish between plaques. This feature is invar-
iant for pixels across an A-line but varies across A-lines. 

Mean Intensity ( I ): This represents the average signal 
intensity of the different plaque types within the 3D neigh-
borhood.  As can be seen from Figure 3, this is a very dis-
tinctive feature. 
Homogeneity (H): This is a local coefficient of variation,  
( / Iσ ).  It helps in distinguishing between heterogeneous 
intensity regions and homogeneous intensity regions. 
Relative Smoothness of Intensity (S): This is defined as:

21 1 (1 )S σ= − + . S is 0 for constant intensity regions and 
it approaches 1 for large deviations in intensity values.  
Entropy (E): Entropy is another measure of the variability 
of the signal intensity within the respective plaque type 
regions. To compute it, we construct a histogram of the 
intensity distribution within a 3D-neighborhood. Then en-
tropy is defined as: 

1
( ) log ( )20

L
E p z p zi ii

−
∑= −
=

, 

where (z )p i   is the probability of the intensity level zi, 

i=1,…,L for L bins in the histogram of intensity levels. It is 
expected that within homogeneous regions the entropy will 
be low and within heterogeneous regions it will be high. 
Similar features as these are often used in image pro-
cessing applications (Gonzalez et al. 2009).  

The final two features we use are optical parameters.  
These features are based on models of light transmission 
and reflectance described below. 
Attenuation coefficient, μt – This feature measures the 
rate at which the signal intensity drops off within the tis-
sue. Calcified plaque has lower attenuation, and as a result, 
IVOCT can see deeper into these tissues, compared to lipid 
where IVOCT does not see as deeply. For this reason, the 
attenuation coefficient (or penetration depth) gives useful 
information about plaque types.   
Incident intensity, I0 – This represents the backscattering 
characteristics of the plaque at the point where the light 
touches it.  This feature is excellent at distinguishing fi-
brous plaques, which are very reflective. 

In order to estimate Io and μt, we modeled the OCT sig-
nal as Lambert-Beer exponential decay function (Wang et 
al. 2007), with the addition of baseline Ibaseline to account 
for noise and other sources that elevate the expected signal. 

Figure 3: Appearance of plaque types in clinical images. A is
fibrous, B is lipid and C is calcium.  D shows the appearance of a
normal blood vessel wall which has layered structure. 
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Here T(r) is the longitudinal point spread function which 
describes the shape and focal point of the beam and thus 
affects the contrast of the image, and S(r) is the Gaussian 
coherence function which describes the signal roll-off with 
depth (Van Soest et al. 2010). In order to identify the un-
known parameters in these two functions, we use nonlinear 
optimization over their unknown variables.  After estimat-
ing T(r) and S(r), and subtracting the baseline intensity, we 
use least squares estimation to find the unknowns Io and μt 
for each separate A-line (Gargesha et al. 2015). We veri-
fied these estimates by fabricating phantom (realistic imita-
tions) blood vessels with known plaque types and checking 
the estimates against measured values in these cases. 

The Plaque-Type Classifier 
After extracting features from pixels in our OCT images, 
we then train a support vector machine (SVM) (Cristianini 
et al. 2000) with a radial basis function (RBF) kernel for 
classification of the individual pixels. The SVM is a state-
of-the-art classification method. It is widely used due to its 
high accuracy, ability to deal with high-dimensional data, 
and flexibility in modeling diverse data sources. We use a 
standard SVM formulation (omitting details due to space). 
Given that we are interested in classifying three different 
plaque types, we use a one-versus-rest (OVR) approach for 
multi-class classification.  There are two parameters 
which must be input to the SVM: C, the regularization pa-
rameter that trades off margin size and training error, and 
γ, the RBF kernel’s bandwidth. In our experiments, we 
select these parameters using an internal 5-fold stratified 
cross validation loop and a two-dimensional grid search. 

Empirical Evaluation 
We now describe experiments to test our hypothesis that 
the system we described will be able to accurately and effi-
ciently classify different plaque types from OCT images.  

The clinical images (in-vivo) that we use were selected 
from the database available at our institutions. The images 
consist of 35 IVOCT pullbacks of the Left Anterior De-
scending (LAD) and the Left Circumflex (LCX) coronary 
arteries of patients acquired prior to stent implantation, 
with a total of 287 images across 35 patients. An expert 
cardiologist on our team then labeled volumes of interest 
(VOIs) as belonging to one of the three plaque types in the 
images. The expert marked the VOIs of a particular plaque 
type using freehand brush strokes. On the clinical images 
the expert annotated 311 VOIs (roughly equal number 
from each plaque type). VOIs were of various sizes and 
shapes. Most consisted of 2-5 image frames, 50-200 A-
lines, and 20-50 sample points in each A-line. 

We also acquired a second set of 106 images from blood 
vessels used in cadaver studies. Since in this case the blood 

vessels can be extracted and cryogenically frozen and im-
aged, they are much easier to label very accurately for the 
expert. However, since this is ex-vivo, we do not use these 
images for training our classifiers, but use them to validate 
the 1results. We call these images “Cryo-images” below to 
distinguish them from the previous set. 

Next, we preprocess all images for speckle noise reduc-
tion, baseline subtraction, catheter optical system correc-
tion, and catheter eccentricity correction. We segment the 
lumen and the back-border using dynamic programming. 
To do this, we use a cost function from prior work (Wang 
2012). An example of the results of the back-border seg-
mentation is shown in Figure 4 in both (r-θ) view and (x-y) 
view. Segmenting the image in this way is important be-
cause (i) the regions of interest are contained between the-
se borders and the rest of the pixels do not contain any 
relevant information, and (ii) it enables us to properly 
compute the distance to the lumen and the beam penetra-
tion depth discussed above, which are important signals for 
different plaque types. 

Next, we generate features by scanning the annotated 
VOIs in the image pixel by pixel. For each pixel, we con-
struct a 7 x 11 x 3 neighborhood (0.035mm x 0.055mm x 
0.6mm) around it. As long as the neighborhood is within 
the VOI, the features of the box are computed as explained 
above and the values are assigned to the pixel. In the cryo-
images (images that did not take part in the training at all), 
we generated features for all pixels between border regions 
in a similar way.  
 For cross validation we use the processed images with a 
leave-one-pullback-out strategy. Here, in each iteration, we 
hold out all the data from one pullback as the test set and 
use the remaining 34 pullbacks as the training set. This 
mimics practical usage where the system will operate on 
novel pullbacks and is more stringent than using random 
folds. In a second experiment, we ran the trained classifiers 
on the cryo-images (these were not used at all during train-
ing/cross validation). We ran our experiments on a 64-bit 
Windows 7 machine with 3rd generation Intel Core i7 and 
16 GB RAM 
                                                             
 

(a) (b) 

Figure 4: An illustration of back border segmentation (yellow 
line) along with lumen segmentation (red line) in a typical 
clinical image in both views. (a) is the polar image and (b) is 
the x-y image. The yellow line is broken due to view 
conversion). Asterisk marks the guide-wire shadowing artifact. 

*

*
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Results and Discussion 
The Receiver Operating Curves (ROC) for each OVR clas-
sifier from the cross validation experiment is shown in 
Figure 5. The summary statistics are shown in Table 1, 
where the accuracy, sensitivity and specificity are noted at 
the optimal operating point along the curves. The ROC 
describes the system’s behavior for a range of confidence 
threshold settings and enables the cardiologist (the end 
user) to decide on weighting the false positives (FP) and 
false negatives (FN) unequally (a very desirable property 
according to our expert).   

 CALCIUM LIPID FIBROUS 
ACCURACY 92.2±6.28% 96.95±2.79% 96.17±4.0% 
SENSITIVITY 93.0±2.58% 98.95±2.35% 94.28±5.23% 
SPECIFICITY 96.5±3.39% 93.65±2.77% 95.89±2.18% 
AUC 0.9837 0.9947 0.9959 

Table 1: Performance measures: Area under ROC and the 
accuracy, sensitivity and specificity at the optimal operating point 
on the ROC curves. 

The overall accuracy results averaged over 35 folds are 
shown in Table 2. As can be seen from all of these results, 
our approach has excellent accuracy for all three plaque 
types. In fact, across the 35 folds, the median accuracy for 
all three plaque types is 100%, indicating that our classifi-
ers are (in most cases) able to perfectly separate the plaque 
types using the features we designed. In a few folds, the 
accuracy is lower than 100%. We conjecture that this is 
because some pullbacks have many more images associat-
ed with them than others. When such a pullback is held 
out, the training set size becomes much smaller, and yields 
a classifier with lower accuracy. 

 
 

Figure 5: ROC curve for all three plaque types.  Area Under 
the Curve (AUC) values are 0.9837, 0.9947 and 0.9959 for 
calcium, lipid and fibrous respectively. 

In the second experiment, we ran our trained classifier 
on the cryo-images. We also ran a baseline approach fol-
lowing (Ughi, Adriaenssens et al. 2013). This approach 

used beam attenuation estimates from a layer model 
applied to single A-lines and 2D texture and geometric 
measures as features for classification with the added 
requirement of manual region of interest  selection for 
analysis. These results are shown in Table 3. Here the 
“Other” row corresponds to pixels in these images that 
belong to none of the three plaque types. The accuracy of 
the approach in this case is lower, possibly because these 
are ex-vivo images which have somewhat different charac-
teristics from the training set. However, our approach still 
outperforms the state of the art. Further, these values are 
still at a very useful level according our expert.  In particu-
lar, cardiologists now divide an image into quadrants and 
simply state whether a quadrant contains a certain plaque 
type. If we use this as a performance measure, our current 
approach has perfect accuracy on the cryo-images. 

 ACCURACY MEDIAN ACC. 
OVERALL 90.70±8.28%  
CALCIUM 92.14±10.74% 100% 
LIPID 96.40±8.87% 100% 
FIBROUS 100%±0.0% 100% 

Table 2: Accuracy results for leave-one-pullback-out 
experiment 

 
 OUR APPROACH BASELINE 
OVERALL 81.15% 69.4% 
CALCIUM 97.62% 66.88% 
LIPID 87.65% 67.07% 
FIBROUS 97.39% 77.95% 
OTHER 77.96% 30.46% 

Table 3: Accuracy results for Cryo-images. 

The results also indicate that in some cases some plaque 
types may be confused with others. For example, the aver-
age intensity of a lipid region may be very close to that of 
calcium. However, they may still be separable due to the 
fact that the lipid’s attenuation coefficient is much higher.  

To confirm our intuitive understanding of the plaques’ 
characteristics we performed a leave-one-feature-out ex-
periment.  In this experiment, we ran the classifier using all 
of the features and noted the accuracy measures (as shown 
in Table 2). We then removed each feature at a time to see 
the impact on the accuracy.  We found that removing the 
attenuation parameter had the biggest impact on the lipid 
accuracy reducing it down to 92.4±8.87% while removing 
the average intensity feature, had a significant effect on the 
fibrous’ accuracy and uncertainty (down to 95.2%±10.75).
 In addition to high accuracy, our approach was also 
efficient at classification. Each test fold (on average 
200,000 datapoints) was classified in 0.0366 seconds by 
our implementation. This facilitates future real-time usage. 

Finally, we consider whether an automatic classification 
procedure such as this can be useful in reducing the 
amount of time taken to process images in a clinical 
setting. In an initial experiment, we found that cardiolo-
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gists would spend approximately 5 hours analyzing a sec-
tion of a blood vessel. We then created a tool (Figure 6) 
with our classifier built in. The cardiologist would run the 
classifier for a new image and then, using the tool, analyze 
the results and correct some of the errors in the predictions. 
We found that this process took at most an hour, a reduc-
tion of 80%. This effort reduction indicates that improving 
the tool will make it deployable in the near future.  

Conclusion 
In this paper, we have discussed an important emerging 
application: an automated approach to early plaque detec-
tion in blood vessels. Our approach analyzes OCT images 
to solve this task. Using a carefully designed feature set, 
we show that an SVM with an RBF kernel is a high-
accuracy classifier for this task. Our results are of signifi-
cant impact on this important  problem (Wagstaff 2012) 
with implications for early diagnosis of cardiovascular 
disease. In future work, we plan to work on further im-
proving our classification tool and integrating it with a 
real-time 3D visualization module which will be able to 
quantify (volume, area covered, etc.) the presence of calci-
fied regions. This can help in decision making regarding 
stent implantation and pre-implantation treatment (e.g. 
directional atherectomy). We also plan to add an explana-
tory module to help explain the automated classification 
process to the cardiologists, and accept feedback in an ac-
tive learning environment. 
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Figure 6: User Interface of editing tool. 
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