
Data Driven Game Theoretic Cyber Threat Mitigation

John Robertson, Vivin Paliath, Jana Shakarian, Amanda Thart, Paulo Shakarian∗
Arizona State University

Abstract

Penetration testing is regarded as the gold-standard for
understanding how well an organization can withstand
sophisticated cyber-attacks. However, the recent preva-
lence of markets specializing in zero-day exploits on
the darknet make exploits widely available to potential
attackers. The cost associated with these sophisticated
kits generally precludes penetration testers from sim-
ply obtaining such exploits – so an alternative approach
is needed to understand what exploits an attacker will
most likely purchase and how to defend against them.
In this paper, we introduce a data-driven security game
framework to model an attacker and provide policy rec-
ommendations to the defender. In addition to providing
a formal framework and algorithms to develop strate-
gies, we present experimental results from applying our
framework, for various system configurations, on real-
world exploit market data actively mined from the dark-
net.

1 Introduction
Many corporations rely on extensive penetration testing to
assess the security of their computer networks. In a pene-
tration test, a red team is hired to expose major flaws in the
firms security infrastructure. Recently, however, the market
for exploit kits has continued to evolve and what was once a
rather hard-to-penetrate and exclusive market – whose buy-
ers were primarily western governments (Shakarian, Shakar-
ian, and Ruef 2013), has now become more accessible to a
much wider population. Specifically, the darknet portions
of the Internet accessible through anonymization protocols
such as Tor and i2p – have become populated with a vari-
ety of markets specializing in such products (Shakarian and
Shakarian 2015; Ablon, Libicki, and Golay 2014). In partic-
ular, 2015 saw the introduction of darknet markets special-
izing in zero-day exploit kits – exploits designed to lever-
age previously undiscovered vulnerabilities. These exploit
kits are difficult and time-consuming to develop – and of-
ten are sold at premium prices. We have surveyed 8 mar-
ketplaces and show the price ranges of exploit kits for com-
mon software in Table 1 – these range from 0.0126-8.4 Bit-
coin (2.88-1919.06 U.S. dollars at the time of this writing).

∗shak@asu.edu
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The widespread availability of zero-day exploits represents a
potential game changer for penetration testers – specifically
posing the following questions:

• What exploits will an attacker likely purchase if he targets
my organization?

• What software used in the organization pose the biggest
risk to new threats?

However, the high cost of a variety of exploits available on
the darknet may preclude a penetration tester from simply
obtaining them. In this paper, we introduce a novel, data-
driven security game framework to directly address these
challenging questions. Given a system configuration (or a
distribution of system configurations within an organization)
we model an attacker who, given a budget, will purchase
exploits to maximize his level of access to the target sys-
tem. Likewise, a defender will look to adjust system con-
figurations in an effort to minimize the effectiveness of an
attacker while ensuring that necessary software dependen-
cies are satisfied. Not only have we introduced a rigorous
and thoroughly analyzed framework for these problems, but
we have also implemented and evaluated a system that is fed
with real-world exploit market data, mined from the darknet.
We are currently moving our system toward real-time scrap-
ing of market information to provide game-theoretic assess-
ment of the exploit market – while considering specific sys-
tem information. We provide a schematic diagram of our
system in Figure 1. The specific contributions of this paper
include a new security game framework designed to model
an attacker with access to exploit markets and a defender of
information technology infrastructure (Section 2); theoret-
ical analysis of the framework leading to the development
of algorithms to find near-optimal strategies for both play-
ers (Section 3); and an implementation of the system and
the results of a thorough suite of experiments on real-world
data (Section 4). Before discussing these contributions, we
review some domain-specific background and related litera-
ture in the security games.
Exploit markets on the darknet. While criminal activity on
the darknet has been extensively studied over the past decade
for issues such as drug trade (Soska and Christin 2015) and
terrorism (Chen 2011) the markets of exploits existing on
the darknet are much less well-understood. There has been
related work on malicious hacker forums (Zhao et al. 2012;

Proceedings of the Twenty-Eighth AAAI Conference on Innovative Applications (IAAI-16)

4041

Crawler

Threat intelligence
concerning high-
threat exploit kits

Adversarial
modelParsers

Organizational
system information

Darknet exploit markets

Strategies to mitigate
cyber-attacks

Defender
model

Figure 1: Schematic of real-time exploit analysis system.

Product Price in BTC Price in $*

GovRAT (Source Code + 1 Code Signing 2.000 $456.92

Certificate Included)
0day Wordpress MU Remote Shell 1.500 $342.69

A5/1 Encryption Rainbow Tables 1.500 $342.69

Unlimited Code Signing Certificate 1.200 $274.16

Ready-made Linux botnet 600 SERVERS 1.200 $274.16

FUD version of Adobe Flash <=16.0.0.287 1414.68 $600.00

(CVE 2015-0311)

*Price in U.S. Dollar as of Sep. 1, 2015 [1 BTC = $228.46]

Table 1: Example of Products offered on Darknet Markets

Li and Chen 2014), which did not focus on the purchase and
sale of specific items. Markets of malicious products rele-
vant to cyber security have been previously studied (Ablon,
Libicki, and Golay 2014; Shakarian and Shakarian 2015),
but none of these works gathered data on specific exploits
(or other products) from either the darkweb or open Inter-
net; nor did they examine the markets through the lens of
security games. To our knowledge, this is the first work that
describes the collection of price data on specific exploits for
sale on the deep web and then analyzes them in a security
game framework that yields policy recommendations for cy-
ber defenders that are tailored to specific system configura-
tions.
Related work in security games. In recent years, “secu-
rity games” where attacker-defender models are used to in-
form the actions of defenders in military, law-enforcement,
and homeland security applications have gained much trac-
tion (see (Tambe 2011) for an overview). With regard to
cyber-security, there have been many contributions includ-
ing intrusion detection (Nguyen, Alpcan, and Başar 2009);
attack graph based games (Lye and Wing 2005) and honey-
pot placement (Kiekintveld, Lisý, and Pı́bil 2015). However,
to the best of our knowledge, the work of this paper repre-
sents the first game theoretic approach to host-based defense
where the activities of the attacker are informed from an “un-
conventional” source (information not directly related to the
defender’s system) - specifically information from darknet
markets in this case. Further, the very recent emergence of
darknet markets specializing in zero-day exploits allow for
the integration of information that was unavailable in previ-
ous work.

2 Security Game Framework

Here we formalize our concept of our security game where
the attacker is a malicious hacker with access to a darknet

exploit market and the defender is tasked with host-based
defense of either a single or group of systems. We use the no-
tation V to represent the entire set of vulnerabilities within
a given computer system. Though there may be vulnerabil-
ities not yet detected by the system administrator, we can
mine for information on new vulnerabilities through an ex-
amination of darknet hacking markets. In a real-world or-
ganization, system administrators are not able to patch all
vulnerabilities for a variety of reasons. Software dependen-
cies, use of legacy systems, and non-availability of patches
are some examples. To model this, we define a “constraint
set” (denoted C) as a subset of V . The vulnerabilities in a
constraint set represent the vulnerabilities required for some
system functionality. When each vulnerability in a constraint
set C is in the presented attack surface (i.e. externally acces-
sible), C is then said to be satisfied and the system supports
the functionality modeled by C. Let C represent the set of
all possible constraint sets. We extend this idea with an “ap-
plication constraint set” which, for an arbitrary application,
i, denoted Ci, is a set of constraint sets (i.e. Ci ⊆ C). Each
constraint set in Ci represents a set of vulnerabilities that to-
gether will provide complete functionality of application i.
Ci is said to be satisfied if any single constraint set in Ci
is satisfied. If Ci is satisfied by a system configuration, and
hence at least one constraint set in Ci is satisfied, applica-
tion i will properly operate on the system. C is the set of all
application constraint sets for a given system configuration
and represents all of the applications to be run on the system.
So, in this framework, for a given system, a system admin-
istrator must select which vulnerabilities must be present in
order to allow each application i to function. This begs the
question as to how to make this selection – so we now start
to define some concepts relevant to the adversary.

We will use ex to denote a particular exploit - a tech-
nique used to take advantage of a given vulnerability. Let
Ex denote the set of all possible exploits and Ex denote
the set of all possible exploit sets (i.e. Ex = 2Ex). For
each ex ∈ Ex, cex is the associated cost of exploit ex -
and this is specified directly on a darknet market (normally
in Bitcoin). Associated with the set of exploits is the Ex-
ploit Function, ExF , which takes a set of exploits as input
and returns a set of vulnerabilities (i.e. ExF : Ex → 2V).
The set of vulnerabilities produced by ExF (A), for a given
set of exploits A, represents the vulnerabilities that are ex-
ploited by the exploits in A. While many possible variations
of an exploit function are possible, in this paper, we will use
a straightforward definition that extends the exploit func-
tion from singletons (whose associated vulnerabilities can
be taken directly from the online marketplaces) to sets of
exploits: ExF (A) =

⋃
a∈A ExF ({a}). For use in proving

complexity results, we shall denote the special case where
Ex = V , ExF (A) = A, and ∀ex ∈ Ex, cex = 1 as the
“Identity Exploit Model”.
Player Strategies and Payoff. An attacker will use a set of
exploits to attempt to gain access to a system, and must do so
within a budget. Likewise, the defender must identify a set
of vulnerabilities that he is willing to expose (often referred
to as the “presented attack surface”). We define strategies for
the two players formally as follows.

4042

Definition 2.1. (Attack Strategy). Given budget katk ∈
R

+, an Attack Strategy, denoted A is a subset of Ex s.t.∑
a∈A ca ≤ katk.

Definition 2.2. (Defense Strategy). Given a family of ap-
plication constraint sets C = {C0, C1, . . . , Cn}, a Defense
Strategy, denoted D is a subset of V s.t. for each Ci ∈ C,
there exists C ∈ Ci where C ⊆ D.

Note that when a defense strategy D meets the require-
ments of C, as per Definition 2.2, we say D satisfies C. We
will use the notation A,D to denote the set of all attack
and defense strategies, respectively, and refer to an attacker-
defender pair of strategies as a “strategy profile.” We will
also define a mixed strategy for both players in the normal
manner. For the attacker (resp. defender) a mixed strategy
is a probability distribution over A (resp. D). We shall nor-
mally denote mixed strategies as PrA, P rD for each player
and use the notation |PrA| (resp. |PrD|) to denote the num-
ber of strategies in A (resp. D) that are assigned a nonzero
probability by the mixed strategy. We now turn our attention
to the payoff function, which we define formally as follows:

Definition 2.3. (Payoff Function). A payoff function, p, is
any function that takes a strategy profile as an argument and
returns a positive real. Formally, p : A × D → R

+

Unless noted otherwise, we will treat the payoff function
as being computable in polynomial time. Also, the payoff
function is underspecified - which is designed to allow flex-
ibility in the framework. However, in the context of the re-
sults of this paper, we shall consider the following “payoff
function axioms”:

∀D ∈ D, ∀A ∈ A s.t. ExF (A) ∩ D = ∅, p(A,D) = 0 (1)

∀D ∈ D, ∀D′ ⊆ D , ∀A ∈ A, p(A,D
′
) ≤ p(A,D) (2)

∀D ∈ D, ∀A ∈ A, ∀A′ ⊆ A, p(A
′
, D) ≤ p(A,D) (3)

∀A ∈ A, D,D
′ ∈ D, p(A,D) + p(A,D

′
) ≥ p(A,D ∪ D

′
) (4)

∀D ∈ D, A,A
′ ∈ A, p(A,D) + p(A

′
, D) ≥ p(A ∪ A

′
, D) (5)

Axiom 1 states that if the vulnerabilities generated by an
attack strategy’s exploits and the vulnerabilities in a defense
strategy are disjoint sets, the payoff function must return 0.
A consequence of axiom 1 is that if either the attack strategy
or the defense strategy is the empty set, the payoff function
will return 0. Axioms 2 and 3 require the payoff function
to be monotonic in the size of the attack and defense strate-
gies. Axioms 4 and 5 require the payoff function to be sub-
modular with respect to the attack and defense strategies.

In this paper, we shall (in general) focus on the “over-
lap payoff function” which we shall define as follows:
p(A,D) = |ExF (A) ∩ D|. Intuitively, this is simply the
number of vulnerabilities exploited by the attacker. Further,
when dealing with mixed strategies, we shall discuss pay-
off in terms of expectation. Expected payoff can be formally
defined as follows:

Exp(PrA, P rD) =
∑

D∈D

∑

A∈A

PrA(A)PrD(D)p(A,D)

Using the overlap function, the expected payoff can be inter-
preted as the “expected number of exploited vulnerabilities.”

Best Response Problems. We now have the components
to define a pair of decision problems dealing with the best
response for the players. These problems are the determin-
istic host attacker problem (DHAP) and deterministic host
defender problem (DHDP), respectively, and are defined as
follows:

DHAP.
INPUT: katk ∈ R

+, x ∈ R
+, mixed defense strategy PrD,

and payoff function p.
OUTPUT: “Yes” if ∃A ∈ A s.t.

∑
a∈A ca ≤ katk,

and
∑

D∈D PrD(D)p(A,D) ≥ x, “No” otherwise.
DHDP.
INPUT: x ∈ R

+, application constraints C, mixed attack
strategy PrA, and payoff function p.
OUTPUT: “Yes” if ∃D ∈ D s.t.

∑
A∈A PrA(A)p(A,D) ≤

x and D satisfies C. and “No” otherwise.
The natural optimization variants for these two problems

will deal with maximizing the payoff in DHAP and mini-
mizing the payoff in DHDP.

3 Analysis and Algorithms

In this section we analyze the complexity and limits of ap-
proximation for both DHAP and DHDP. We use the ”Iden-
tity Exploit Model” for the complexity results. Unfortu-
nately, both problems are NP-Complete in the general case.
Theorem 1. DHAP is NP-Complete, even when |PrD| = 1
and the payoff function adheres to the submodularity and
monotonicity axioms.
Proof Sketch. Membership in NP is trivial if the payoff is
PTIME computable. The hardness result relies on an em-
bedding of the well-known budgeted set cover (Feige 1998).
Here, the defender’s strategy is treated as a set of elements
to cover and the exploits are treated as subsets of D (by
virtue of the exploit function). Exploit costs are set as 1 and
the attacker’s budget is the value budget from the embed-
ded problem. So, the attacker must pick exploits to meet the
budget and cover the determined number of the defender’s
vulnerabilities.�
Theorem 2. When |C| > 1 and |PrA| = 1, DHDP is NP-
Complete.
Proof Sketch. Again, membership in NP is trivial if the pay-
off is PTIME computable. Hardness is shown by embedding
the hitting set problem. In this reduction, the attacker plays
all exploits and each exploit corresponds with precisely one
vulnerability. This has the effect of imposing a unit cost on
each vulnerability. Here, each Ci must be covered by a vul-
nerability. Hence, the defender must pick a set of all vulner-
abilities to meet the cost requirement of DHDP while cover-
ing each Ci.�
We also were able to analyze the hardness of approximation
for the optimization variants of DHAP and DHDP. Due to
the fact that the above embeddings used set cover and hitting
set, we can draw upon the results of (Feige 1998) to obtain
the following corollaries:
Corollary 3. DHAP can not be approximated where the
payoff is within a factor of (1− 1

e) unless P = NP

4043

Corollary 4. DHDP can not be approximated where the
payoff is within a factor of (1−o(1))ln(n) unless P = NP

With the limits of approximation in mind, we can now in-
troduce several algorithms to solve the optimization variants
of DHAP and DHDP. The optimization variant of DHAP
under the overlap payoff function is a special case of sub-
modular maximization with the distinction that we are not
simply picking k discrete objects, but instead picking items
that each have a unique cost associated with them. Under-
standing this, we examine several different approaches to
this problem based on the literature on submodular maxi-
mization. DHDP, on the other hand, can be readily approxi-
mated using the traditional set-cover algorithm (under some
realistic assumptions), as cost does not affect DHDP.

Algorithm 1 Lazy Greedy Algorithm (Cost-Benefit Variant)
Input: katk ∈ R

+, PrD, and payoff function p.
Output: A ⊆ Ex s.t.

∑
a∈A ca ≤ katk

1: A ← ∅; cost ← 0; priority queue Q ← ∅; iter ← 1
2: for e ∈ Ex do

3: e.key ← Δp,PrD
(e|∅)

ce
; e.i ← 1

4: insert e into Q with “key” as the key
5: end for
6: while {a ∈ Ex\A : ca + cost ≤ katk} �= ∅ do
7: extract top (max) element e of Q
8: if e.i = iter and ce + cost ≤ katk then
9: A ← A ∪ {e}; iter ← iter + 1

10: cost ← cost+ ce
11: else if ce + cost ≤ katk then

12: e.i ← iter; e.key ← Δp,PrD
(e|A)

ce
;

13: re-insert e into Q
14: end if
15: end while
16: return A

Algorithms for DHAP.
Greedy Approaches. As mentioned earlier, the non-unit
cost of exploits mean that DHAP can be considered as
a submodular maximization problem subject to knapsack
constraints. Two versions of the traditional greedy algo-
rithm (Nemhauser, Wolsey, and Fisher 1978) can be ap-
plied: a cost-benefit variant and uniform-cost variant, both
of which will also use the lazy-greedy optimization (Mi-
noux 1978) to further enhance performance while main-
taining the approximation guarantee. We note that indepen-
dently, the uniform-cost and the cost-benefit algorithms can
perform arbitrarily badly. However, by extending a result
from (Leskovec et al. 2007), either the cost-benefit or the
uniform-cost algorithm will provide a solution within a fac-
tor of 1

2 (1 − 1/e) for a given set of input parameters. By
applying both algorithms to a given problem instance and re-
turning the attack strategy which produces the larger payoff,
the 1

2 (1− 1/e) approximation factor is achieved for DHAP.
A cost-benefit lazy approximation algorithm is shown in Al-
gorithm 1. By removing “ce” from the denominator in the
e.key assignment in lines 3 and 12, the cost benefit lazy

approximation algorithm is transformed into a uniform cost
lazy approximation algorithm.
Multiplicative Update Approach. An improved approxima-
tion ratio, when compared with the 1

2 (1− 1/e) ratio for the
greedy algorithms, can be obtained by adapting Algorithm 1
from (Azar and Gamzu 2012) for DHAP. This is shown as
Algorithm 2 in this paper. For some value ε (a parameter),
this algorithm provides a (1 − ε)(1 − 1/e) approximation
of the optimal solution (Theorem 1.2 in (Azar and Gamzu
2012)), which, by providing an exceedingly small ε value,
can get arbitrarily close to the (1−1/e) optimal approxima-
tion limit we discussed earlier.

Algorithm 2 Multiplicative Update
Input: katk, ε ∈ R

+ s.t. 0 < ε ≤ 1, PrD, and payoff func-
tion p.

Output: A ⊆ Ex s.t.
∑

a∈A ca ≤ katk
1: Ex′ ← {ex ∈ Ex : cex ≤ katk}
2: A ← ∅
3: W ← minex′

i∈|Ex′| k2atk/cex′
i

4: w ← 1/katk; λ ← eεW/4

5: while katkw ≤ λ and Ex′ �= ∅ do

6: exj ← argminexj∈Ex′\A
cexj

katk
w/Δp,PrD (exj |A)

7: A ← A ∪ {exj}
8: w ← wλcexj

/k2
atk

9: Ex′ ← Ex′\{exj}
10: end while
11: if

∑
Ai∈A cAi ≤ katk then

12: return A
13: else if

∑
D∈PrD

PrD(D)p(A\{exj}, D) ≥∑
D∈PrD

PrD(D)p({exj}, D) then

14: return A\{exj}
15: else
16: return {exj}
17: end if

Algorithm for DHDP. When using the overlap payoff func-
tion, DHDP can be modeled as a weighted set cover prob-
lem. Because the overlap payoff function is a modular func-
tion, the associated cost of a given vulnerability v, is simply
the payoff produced by the singleton set {v} with a mixed
attack strategy PrA (i.e. cv =

∑
A∈PrA

PrA(A)p(A, {v}).
In the common case where each constraint set is a singleton
set (i.e. ∀Ci ∈ C, ∀C ∈ Ci, |C| = 1), if the overlap pay-
off function is used, an adaptation on the standard greedy
weighted set cover algorithm can be used for DHDP (Algo-
rithm 3), providing a ln(n)+1 approximation (Feige 1998).

4 Evaluation and Discussion

Darknet Market Data. We scraped and parsed eight mar-
ketplaces located on the Tor network during the month of
May 2015. Each of these markets host vendors offering
“hacking tools”, including malware, botnets, exploits and
other means serving to breach, steal and otherwise manipu-
late virtual targets. The product list is comprised of 235 such
hacking tools, 167 of which were distinct. We found several

4044

Algorithm 3 Weighted Greedy DHDP Algorithm for Sin-
gleton Constraint Set and Overlap Payoff Function Case
Input: Vulnerabilities V , PrA, and application constraints

C.
Output: D ⊆ V s.t. the application constraints C are satis-

fied.
1: D ← ∅
2: S ← set s.t. Si = {j : Vi ∈ Cj where Vi is ith vulnera-

bility in V }
3: cSi

← ∑
A∈PrA

PrA(A)|ExF (A) ∩ {Vi}|
4: C′ ← [|C|]
5: while C′ �= ∅ do

6: Si ← argmaxSi∈S
|Si∩C′|

cSi

7: C′ ← C′\Si

8: D ← D ∪ {Vi}
9: end while

10: return D

Windows
Server

Windows
Client

Linux
Server

Linux
Client

Android

Mac OS X Client POS iOS Device

Figure 2: Distribution of Exploits with respect to platform.

identical products being sold on more than one market usu-
ally by the same seller (using an identical online handle).
The products targeted 21 specific platforms, such as differ-
ent versions of Adobe Flash, Linux, MSWindows and OS
X as well as online presences such as Facebook, Wordpress
and others. Hardware-related software such as those asso-
ciated with Point-of-Sale machines, routers, and servers are
also reflected in this number. Figure 2 illustrates the variety
of products in the markets and Table 2 illustrates exemplar
exploits.

Prod. Vuln. Target USD

Kernel Panic X-display system Linux <= 3.13.0-48 $471.56
IE <= 11 memory corr. IE on Windows <= 7 $35.00
RemoteShell wpconfig.php Wordpress MU $1, 500
0day RCE WebView memory corr. Android 4.1, 4.2 $36.50
WindowsLPE win32k elev. of priv. Windows <= 8.1 $12-48
MS15-034 RCE http.sys Windows <= 8.1 $311.97
FUD Flash Exp. unspec. FlashPlayer <=16.0.0.287 $600.00

Table 2: Examples of Exploits from Darknet Markets

System Configurations. As noted in Figure 2, a variety
of platforms were represented in our darknet market data.
In this paper, we describe results when using application
constraints based on common configurations for Windows
and Linux servers - as these were the most prominent tar-
gets of exploits found on the darknet. In our experiments,
we mapped software such as media players, databases, and
FTP server software to application constraint sets to model
the functional requirements of a system. We have also cre-

Figure 3: DHAP Payoff vs Budget - Left: Windows Server;
Right: Linux Server.

ated (and conducted experiments with) models for Android,
Point-of-Sale, and Apple systems – though qualitatively the
results differed little from the Windows and Linux Server
experiments.
DHAP Results. We implemented both the greedy and mul-
tiplicative update approaches to the DHAP problem. For the
greedy algorithm, we studied three variants of greedy (cost-
benefit, uniform cost, and combination of the the two) while
we varied the parameter ε for the multiplicative update ap-
proach. We examined attacker payoff as a function of budget
(in Bitcoin). Figure 3 displays this result. Though the cost-
benefit greedy algorithm has the potential to perform poorly,
it was, in general, the best performing approach - despite the
multiplicative update approach achieving the better approx-
imation guarantee. Further, the multiplicative update algo-
rithm (Algorithm 2) was consistently the slowest in terms
of runtime, taking much longer than the lazy greedy algo-
rithms, particularly for high values of katk. Despite the mul-
tiplicative update algorithm having a better theoretical ap-
proximation ratio when compared to the tandem of greedy
algorithms, namely (1−ε)(1−1/e) compared to 1

2 (1−1/e),
we see in Figure 3 that the greedy algorithms performed as
well as or better than the multiplicative update very consis-
tently. In all algorithms, as expected, runtime grew with bud-
get (not pictured) - though the relationship was not strict, as
an increase in budget does not necessarily mean that more
exploits will be selected. In our experiments (on a commod-
ity computer equipped with a 3.49 GHz i7 CPU and 16 GB
of memory), our runtimes never exceeded ten minutes.
DHDP Results. Figure 4 demonstrate a defender’s best
response to an attack strategy against a Windows Server
and Linux Server, respectively, for varying values of katk.
Though we see similar trends in Figure 3 as we do in Figure
4, we see that the payoff is generally lower, meaning that the
defender can lower the expected payoff by enacting a best
response strategy to an attack strategy produced by DHAP
- which in our framework translates to fewer exploited vul-
nerabilities.
Exploit Payoff Analysis. Instead of altering the software
that appears on the host system in an attempt to avoid
exploits, such as in the best response approach, in ex-
ploit payoff analysis, the defender will identify which spe-
cific exploits are increasing the payoff the most, with a
hope that the defender can reverse-engineer the exploit,
or patch the vulnerability himself. To identify which ex-
ploits should be reverse-engineered, the defender first runs

4045

Figure 4: Defender Best Response, Payoff vs katk - Left:
Windows Server; Right: Linux Server.

DHAP against his host system to identify what payoff an
attacker could expect to produce. Then, for each exploit
ex, the defender runs DHAP against the host with the set
of exploits Ex\{ex}. The exploit ex that, when removed
from the universe of exploits Ex, produces the largest
drop in payoff for the attacker is the exploit that the de-
fender should attempt to reverse-engineer. More formally,
let A be the attack strategy produced by DHAP when us-
ing Ex as the universe of exploits and let Aex be the at-
tack strategy that is produced when DHAP is run against
the host when using Ex\{ex} as the universe of exploits.
The defender will attempt to reverse-engineer the exploit
ex = argmaxex∈Ex p(A,D)− p(Aex, D), where D is the
defense strategy representing the host. To account for ex-
ploits that, though they greatly reduce payoff when removed
from Ex, may be too expensive for the defender to pur-
chase, we also consider a cost-benefit analysis, where the
decrease in payoff is normalized by the cost of the exploit
(i.e. ex = argmaxex∈Ex

p(A,D)−p(Aex,D)
cex

). The top exploits
to reverse-engineer to defend a Windows Server host when
considering an attacker budget of katk = 5, are shown in
Table 3 with columns for both maximum payoff reduction
and maximum cost-benefit analysis.

Exploit Payoff Reduction Max. Cost-Benefit Exploit Cost (BTC)

SMTP Mail Cracker 1 4.757 0.2102
SUPEE-5433 1 1.190 0.8404
Hack ICQ 1 79.089 0.01264
Plasma 0.6677 1.582 0.2563
Wordpress Exploiter 0.6677 2.6467 0.2102
CVE-2014-0160 0.6677 3.178 0.2101

Table 3: Defender Exploit Analysis for katk = 5

Discussion. In future work, we plan to extend the game-
theoretic framework to include non-deterministic problem
formulations and construct algorithms to generate mixed
strategies for the attacker and defender. By extending the ex-
ploit function in the framework, we plan to support blended
threats, where the number of vulnerabilities affected by a
cyber-attack is a superset of the union of the vulnerabil-
ities affected by each individual exploit (i.e. ExF (A) ⊇⋃

a∈A ExF ({a})).
Acknowledgements This work was supported by ASU GSI
and the ONR Neptune program.

References
Ablon, L.; Libicki, M. C.; and Golay, A. A. 2014. Markets for
Cybercrime Tools and Stolen Data: Hackers’ Bazaar. Rand Cor-
poration.
Azar, Y., and Gamzu, I. 2012. Efficient submodular function max-
imization under linear packing constraints. ICALP 1:38–50.
Chen, H. 2011. Dark web: Exploring and data mining the dark
side of the web, volume 30. Springer Science & Business Media.
Feige, U. 1998. A threshold of ln n for approximating set cover. J.
ACM 45(4):634–652.
Kiekintveld, C.; Lisý, V.; and Pı́bil, R. 2015. Game-theoretic foun-
dations for the strategic use of honeypots in network security. In
Cyber Warfare - Building the Scientific Foundation. 81–101.
Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; VanBriesen,
J.; and Glance, N. 2007. Cost-effective outbreak detection in net-
works. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, 420–429.
ACM.
Li, W., and Chen, H. 2014. Identifying top sellers in underground
economy using deep learning-based sentiment analysis. In Intel-
ligence and Security Informatics Conference (JISIC), 2014 IEEE
Joint, 64–67.
Lye, K.-w., and Wing, J. M. 2005. Game strategies in network
security. International Journal of Information Security 4(1):71–86.
Minoux, M. 1978. Accelerated greedy algorithms for maximiz-
ing submodular set functions. In Stoer, J., ed., Optimization Tech-
niques, volume 7 of Lecture Notes in Control and Information Sci-
ences. Springer Berlin Heidelberg. 234–243.
Nemhauser, G.; Wolsey, L.; and Fisher, M. 1978. An analysis of
approximations for maximizing submodular set functions. Mathe-
matical Programming 14(1):265–294.
Nguyen, K. C.; Alpcan, T.; and Başar, T. 2009. Stochastic games
for security in networks with interdependent nodes. In Game The-
ory for Networks, 2009. GameNets’ 09. International Conference
on, 697–703. IEEE.
Shakarian, P., and Shakarian, J. 2015. Considerations for the de-
velopment of threat prediction in the cyber domain. submitted.
Shakarian, P.; Shakarian, J.; and Ruef, A. 2013. Introduction to
cyber-warfare: A multidisciplinary approach. Elsevier.
Soska, K., and Christin, N. 2015. Measuring the longitudinal evo-
lution of the online anonymous marketplace ecosystem. In 24th
USENIX Security Symposium (USENIX Security 15), 33–48. Wash-
ington, D.C.: USENIX Association.
Tambe, M. 2011. Security and Game Theory: Algorithms, De-
ployed Systems, Lessons Learned. New York, NY, USA: Cam-
bridge University Press, 1st edition.
Zhao, Z.; Ahn, G.-J.; Hu, H.; and Mahi, D. 2012. Socialimpact:
Systematic analysis of underground social dynamics. In Foresti,
S.; Yung, M.; and Martinelli, F., eds., ESORICS, volume 7459 of
Lecture Notes in Computer Science, 877–894. Springer.

4046

