

 Automated Capture and Execution of Manufacturability

Rules Using Inductive Logic Programming

Abha Moitra

Senior Computer Scientist
Knowledge Discovery Lab

 GE Global Research (GRC)
Niskayuna, NY, USA, 12309

moitraa@ge.com

Ravi Palla
Computer Scientist

Knowledge Discovery Lab
 GE Global Research (GRC)
Niskayuna, NY, USA, 12309

palla@ge.com

Arvind Rangarajan
Mechanical Engineer

Model-Based Manufacturing Lab
GE Global Research (GRC)
Niskayuna, NY, USA, 12309
Arvind.Rangarajan@ge.com

Abstract
Capturing domain knowledge can be a time-consuming pro-
cess that typically requires the collaboration of a Subject
Matter Expert and a modeling expert to encode the
knowledge. In a number of domains and applications, this
situation is further exacerbated by the fact that the Subject
Matter Expert may find it difficult to articulate the domain
knowledge as a procedure or rules, but instead may find it
easier to classify instance data. To facilitate this type of
knowledge elicitation from Subject Matter Experts, we have
developed a system that automatically generates formal and
executable rules from provided labeled instance data. We do
this by leveraging the techniques of Inductive Logic Pro-
gramming (ILP) to generate Horn clause based rules to sep-
arate out positive and negative instance data. We illustrate
our approach on a Design For Manufacturability (DFM)
platform where the goal is to design products that are easy
to manufacture by providing early manufacturability feed-
back. Specifically we show how our approach can be used
to generate feature recognition rules from positive and nega-
tive instance data supplied by Subject Matter Experts. Our
platform is interactive, provides visual feedback and is itera-
tive. The feature identification rules generated can be in-
spected, manually refined and vetted.

 Introduction
The ability to capture domain knowledge is a critical task
in many domains and applications. Quite often knowledge
capture poses a roadblock in quickly developing and de-
ploying systems that automate processing or reasoning
tasks. For instance, a Subject Matter Expert (SME) might
have deep domain knowledge but may not be able to de-
scribe it in terms of concepts and relationships that can be
used for representing the knowledge. Also at times, the

Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

SME may not be able to describe the knowledge at the
right level of detail that may be needed for making auto-
mated decisions.

In order to overcome such issues, we use an Inductive
Logic Programming (ILP) based approach wherein the
SME essentially identifies positive and negative examples
for describing a concept and the ILP system uses them to
derive logic programming rules for formally defining the
concepts. Our approach is iterative in the sense that the
SME can refine the rules learned by adding more positive
and negative examples.

Our approach relies on a semantic model (consisting of
ontologies and rules) that initially describes the basic con-
cepts and relationships of the domain. To learn definitions
of more complex concepts, the SME provides positive and
negative examples that are automatically translated into a
formal representation using the basic concepts and rela-
tionships.

The complex concepts thus learned are added back to
the semantic model and this process is repeated to learn
multiple levels of knowledge.

Our approach addresses both the issues described above.
Since we automatically translate the example data provided
by SME into a logical representation, the SME is not re-
quired to have knowledge of the concepts and relationships
in the ontology. Also, since the SME only identifies posi-
tive and negative examples and repeats the learning ap-
proach until the knowledge learned is satisfactory, it pro-
vides a way for deriving complete and accurate descrip-
tions of the concepts in the domain.

The rest of the paper is organized as follows. We start by
briefly introducing ILP and then we describe the manufac-
turing domain where we applied this approach. We then
discuss the Integrated DFM Learning Platform that we
have developed and deployed, and illustrate our entire ap-
proach with examples. We then highlight some results that

Proceedings of the Twenty-Eighth AAAI Conference on Innovative Applications (IAAI-16)

4028

we obtained by applying the approach on the domain. Fi-
nally we discuss related work and conclusions.

Inductive Logic Programming
Inductive Logic Programming (Muggleton 1991) is a
branch of Machine Learning that deals with learning theo-
ries in the form of logic programs.

 Given background knowledge (B) in the form of a logic
program, and positive and negative examples as conjunc-
tions E+ and E- of positive and negative literals respective-
ly, an ILP system derives a logic program H such that:
• all the examples in E+ can be logically derived from

B ^ H, and
• no negative example in E- can be logically derived from

B ^ H.
ILP has been successfully used in applications such as bio-
informatics and Natural Language Processing (Bratko and
Muggleton 1995), (Chen and Mooney 2011), (Faruquie,
Srinivasan, and King 2013). A number of ILP implementa-
tions are available. Examples include Aleph1, Progol2
(Muggleton 1995), and Atom3. In our work, we use Aleph
with SWI-Prolog4 (Wielemaker et al. 2012).

Design For Manufacturability
Design for manufacturability (DFM), a term used for in-
corporating manufacturing feedback during design phase,
has gained popularity among design engineers and original
equipment manufacturers (OEMs). DFM has become an
integral part of the product development process. The main
goal of DFM systems is to decrease iterations between de-
sign and manufacturing, thereby resulting in reduced lead
time for new product introduction.

A typical design rule consists of a geometric feature, pa-
rameters associated with feature, and constraints on the pa-
rameters that define the bounds of manufacturability. For
example, a rule for sheet metal hole drilling states “hole
diameter must be at least equal to the sheetmetal thickness”
(Radhakrishnan et al., 1996). Any implementation of this
rule must start with definition of the hole feature. The di-
ameter is the parameter associated with the hole feature
and the thickness constrains the parameter. So, a primary
requirement for a DFM system is the ability to recognize
features.

1 http://www.cs.ox.ac.uk/activities/machlearn/Aleph/
2 http://www.doc.ic.ac.uk/~shm/progol.html
3 http://www.ahlgren.info/research/atom/
4 http://www.swi-prolog.org/

Automated Feature Recognition
Automated Feature Recognition (AFR) plays a critical role
in DFM as manufacturability rules can be defined for fea-
tures. Extensive work has been done on AFR and (Babic,
Nesic, and Miljkovic 2008) provide a detailed survey.
While there are a number of different approaches, we focus
on rule-based approaches as the results can more easily be
examined and refined by domain experts. So, for our pur-
poses, features are defined in terms of geometric and topo-
logical information and can be encoded as if-then rules.
These rules are typically composed of attributes / proper-
ties of faces, edges, vertices.

(Brousseau, Dimov, and Setchi 2008) propose a method
to automatically generate feature recognition rules using an
inductive learning algorithm on training data consisting of
feature examples. While their approach seems very similar
to our approach, the key difference is that the feature ex-
amples they provide are all “simple” (i.e. the entire part has
just that one feature) and they consider only planar and cy-
lindrical faces (though they say that their approach can be
extended). Our approach works with detailed actual parts
including compressor casings and so allows us to generate
AFR rules that handle complexities found in actual parts.
We have automatically generated rules for tapers, spot fac-
es, pad fillets, flange faces etc. Our platform is also inter-
active so we can consider one feature at a time building on
previously generated feature recognition rules and it is in-
tegrated with CAD tool for visualization.

Once feature recognition rules are developed, they can
then be incorporated in a knowledge base (Phelan, Wilson,
and Summers 2014). These knowledge bases can also be
used in various ways including generating explanations for
AFR (Wang 2012).

Commercial DFM Tools
There are several DFM tools currently available either as a
standalone package or integrated with CAD tools. Some of
them are DFMPro from Geometric5 that is available in
SolidWorks6, Checkmate in NX7, DFM tool from Booth-
royd and DewHurst Inc.8 and Apriori9. These tools consist
of several rules sourced from handbooks and rules-of-
thumb enabling engineers to check different attributes of
the design within the modeling environment.

Most of these commercial DFM systems have a fixed
rules database, to which any addition is typically made by
the software vendor. Tools such as NX’s Checkmate per-
mit adding custom rules but the interface is not intuitive

5 http://dfmpro.geometricglobal.com/
6 http://www.solidworks.com/
7 http://www.plm.automation.siemens.com/en_us/products/nx/
8 http://www.dfma.com/
9 http://www.apriori.com/

4029

and the programming effort required to carry out additions
is tedious.

Integrated DFM Learning Platform
We have developed a DFM platform (Rangarajan et al.
2013) that provides manufacturability analysis and design
feedback based on semantic technologies. We have ex-
tended this semantic DFM platform so that we can auto-
matically generate feature recognition rules in the manu-
facturability domain. In our target domain, it is critical that
our platform be integrated with the standard domain specif-
ic CAD tool. Consequently, in our integrated platform, the
semantic model is integrated with NX environment. This
integration is provided by Java code that mediates between
Jena objects and NX objects. The three components in our
platform architecture are therefore NX CAD tool, Java
processing and a semantic model, and the control and data
flow is as shown in Fig. 1. The NX CAD tool provides ge-
ometry and topological information, and it also provides
visualization of the part design. The semantic model is an
OWL model and it provides a graph representation of the
geometry and the ability to encode feature recognition and
manufacturability rules. Java controls logic of events and it
is also the bridge between the CAD and the OWL. Since
OWL and CAD APIs are not (currently) compatible, Java
is necessary to realize the communication.

NX
One of our goals is to make our platform as CAD tool ag-
nostic as possible. For this reason we work with the B-rep10
representation of the part. B-rep is a popular representation
that uses faces, edges, vertices and their properties to de-
scribe a part. The Java processing uses NX APIs to access
the B-rep representation of the part and make them availa-
ble to the semantic model.

Semantic Model
We represent the semantic model using the Semantic Ap-
plication Design Language (SADL)11 (Crapo and Moitra
2013) which is an English-like language for representing
ontologies. The SADL tool, which is available as a plugin
to Eclipse, automatically translates statements in SADL to

10 https://en.wikipedia.org/wiki/Boundary_representation
11 http://sadl.sourceforge.net/

OWL. SADL uses Apache Jena12 as the default inference
engine. SADL also enables us to represent rules which are
then translated to Jena rules. We translate the rules learnt
using Aleph into SADL in order to enable querying over
the OWL + rules integrated framework using SPARQL13.
A portion of the semantic model in SADL is shown in Fig.
2.

ILP Set Up
For ILP we need to provide background knowledge; and in
our platform we base it directly on the semantic model. So,
the class AbstractFace in the semantic model is represent-
ed using the predicate face; and the property adjacentFace
that has AbstractFace as both domain and range in the se-
mantic model is represented as adjacentface(+face,-face).
The background knowledge also allows us to select what
predicates can be used in the construction of generated
rules, thereby providing flexibility and directing rule gen-
eration process. The background knowledge is shown in
Fig 3.

12 https://jena.apache.org/
13 http://www.w3.org/TR/rdf-sparql-query/

Figure 1. DFM Architecture with Control and Data Flow.

Figure 2. Semantic Model.

AdjacencyType is a class,
 must be one of {TANGENT, CONVEX,
 CONCAVE, UNKNOWN}.
Vertex is a type of AbstractSADLnx,
 described by connectedEdges with values of type AbstractEdge.

AbstractEdge is a type of AbstractSADLnx,
 described by endpoint with values of type Vertex,
 described by connectedTo with values of type AbstractEdge,
 described by edgeAdjacencyType
 with a single value of type AdjacencyType,
 described by connectedFaces with values of type AbstractFace,
 described by edgeAdjacencyAngle
 with a single value of type double.

connectedFaces of AbstractEdge has exactly 2 values.

{Circular, Elliptical, Intersection, Linear, Spline, SP_Curve}
are types of AbstractEdge.

AbstractFace is a type of AbstractSADLnx,
 described by edge with values of type AbstractEdge,
 described by adjacentFace with values of type AbstractFace,
 described by faceAdjacencyType
 with a single value of type AdjacencyType.
faceAdjacencyType of AbstractFace has default UNKNOWN.

{Blending, Conical, Cylindrical, Parametric, Planar, Spherical,
 Surface_Of_Revolution}
are types of AbstractFace.

4030

Figure 3. Fragment of ILP Background Knowledge.

The background knowledge also includes instance data
which is generated as follows: the platform writes out the
instance data for the part in N-triples14 format and then us-
es SWI-Prolog to ingest and translate it into literals based
on the predicates declared in Fig 3. For running ILP, we re-
tain just local information for the positive and negative ex-
amples so that the rules learned are general enough to be
applicable across different parts. For example, if a (positive
or negative) example identified was face f0, then the in-
stance data supplied to ILP consists of f0 and all its proper-
ties including edges of f0 and adjacent faces of f0. It also
includes properties of the edges of f0 and the properties of
adjacent faces of f0. If f0 has an adjacent face f1, and f1 has
an adjacent face f2 (and f2 is not an adjacent face of f0)
then f2 is not included in the instance data related to f0.
The generation of this local information is also done as part
of the processing in SWI-Prolog.

14 http://www.w3.org/TR/n-triples/

If f0 is a positive or negative example, it is represented
as new_feature(f0). By convention, all positive examples
are placed in a file with extension “.f” (f for fact) and all
negative examples are placed in a file with extension “.n”
(n for negative).

The results obtained by running the generated rules are
integrated into the platform so that they can be visualized
using NX and the Integrated DFM Learning Platform as
shown in Fig. 4. We can iterate over different positive and
negative examples to generate learned rules. Once we are
satisfied with the rule that is learned for a concept then we
encode that rule in the semantic model. It is then available
as a domain concept for any subsequent iterations of ILP to
learn additional concepts.

Figure 4. Integrated DFM Learning Platform.

Semantic DFM Platform

The learned feature recognition rules are folded back into
the semantic DFM platform where manufacturability rules
are defined for the various features. The learned rules are
persisted and maintained as part of the DFM platform.

Illustrative Examples
We have used the Integrated DFM Learning Platform to
work with large industrial designs like compressor casings
and have generated feature recognition rules for pad fillet,
tapers, spot faces, flange faces etc. Here we will illustrate
this platform via 2 examples.

Example 1
In this example we will illustrate the working of the devel-
oped Integrated DFM Learning Platform on a very simple
part as shown in Fig. 5. As can be seen in Fig. 5, 4 holes
are visible, one is a through hole, another is a blind hole
with a flat bottom and remaining 2 holes are blind holes
each with a conical bottom. The goal is to generate a rule
that identifies blind holes with a conical bottom. The user
selects 2 positive instances of the feature to be recognized,
which are highlighted as shown in Fig. 5a. In general, it is
not necessary to select all positive instances present and
that will be illustrated in an example later on.

% Hypothesis declaration; feature to be learned
:- modeh(1, new_feature(+face)).

% Background knowledge declaration
:- modeb(4,type(+face,#fetype)).
:- modeb(4,adjacentface(+face,-face)).
:- modeb(4,type(+edge,#fetype)).
:- modeb(4,edge(+face,-edge)).
:- modeb(*,connectedto(+edge,-edge)).
:- modeb(*,connectedfaces(+edge,-face)).
:- modeb(4,edgeadjacencytype(+edge,#edgeadjacencytype)).
:- modeb(4,faceadjacencytype(+face,#faceadjacencytype)).
:- modeb(4,closed(+face)).
:- modeb(4,concave(+face)).
:- modeb(4,notconcave(+face)).

% what can be used in generated rule
:- determination(new_feature/1,type/2).
:- determination(new_feature/1,adjacentface/2).
:- determination(new_feature/1,edge/2).
:- determination(new_feature/1,connectedto/2).
:- determination(new_feature/1,connectedfaces/2).
:- determination(new_feature/1,edgeadjacencytype/2).
:- determination(new_feature/1,faceadjacencytype/2).
:- determination(new_feature/1,concave/1).
:- determination(new_feature/1,notconcave/1).

% type definitions, fe == face or edge
fetype(blending). fetype(conical). fetype(cylindrical).
fetype(parametric). fetype(planar).
fetype(spherical). fetype(surface_of_revolution).

fetype(circular). fetype(elliptical). fetype(intersection).
fetype(linear). fetype(spline). fetype(sp_curve).

% provide local instance data for
% positive and negative examples from the part

4031

The user then selects 4 negative examples, which are high-
lighted as shown in Fig. 5b. The Integrated DFM Learning
Platform then generates appropriate instance data as ex-
plained in previous section and calls Aleph. In this exam-
ple, Aleph learns one rule as follows:

new_feature(A) :- adjacentface(A,B), type(B,conical).

The Integrated DFM Learning Platform shows the result

of applying this generated rule on the entire part in Fig. 6.
In this case, the generated rule identifies 4 faces that satisfy
the rule and 2 of these are the positive examples that were
supplied and the other 2 are Planar faces. These 2 Planar
faces are listed in Fig. 6 and the user can select any subset
of them and visualize them on the part. Fig. 6 shows these
2 Planar faces highlighted.

Since these Planar faces shown in Fig. 6 are not holes,
the user can add both of these as additional negative in-
stances and re-run the ILP rule generation process. With

the new set of examples (2 positive instances and 6 nega-
tive instances), Aleph learns a new rule as follows:

new_feature(A) :- type(A,closedcylindrical),
 adjacentface(A,B), type(B,conical).

This new rule identifies only the original positive ex-

amples as holes. We should point out that for this illustra-
tive example we used a very simple part, if we use a more
complicated part, the generated rule may change. The rule
generated here simply separates the positive examples
from negative examples; and in fact this rule will match
blind holes with conical bottom as well as some types of
protrusions. If we want to generate a rule that only identi-
fies blind holes, then we would need to use an appropriate
part and select appropriate positive and negative examples.

Another feature of this approach is that we can select
what properties can be used in the generated rule. So if we
drop the property “closedcylindrical” from being available
for rule generation, then the rule generated is as follows:

new_feature(A) :- adjacentface(A,B),
 type(B,conical), closed(A).

Example 2
In this example, we consider an actual part that is both
large and complicated. The part is the top-half casing of an
aircraft engine and the part model consists of 4743 faces
and 10,126 edges. We had previously manually authored
rules to detect pad fillets and had 4 rules to handle various
sub-cases. Here we will focus on generating just one of
these 4 rules, which is a rule to recognize if a Sur-
face_Of_Revolution face is part of a pad fillet or not. Also,
since the top-half casing part has a huge number of pad fil-
lets, we decided that we could work with just a slice of the
entire part for this rule generation exercise. This slice,

Figure 5. Selecting Examples for Blind Holes with Conical Bottom - Selections Displayed in Orange and with Arrows.
(a) Positive Examples. (b) Negative Examples.

Figure 6. Genarated Rule Evaluation – False Positives Displayed
in Orange and with Arrows.

4032

called target part here, is still large and has 823 faces and
2067 edges. The rule that we had previously manually au-
thored is shown in Fig. 7. By running this rule on the target
part we get 41 pad fillets which will serve as our ground
truth.

For the first iteration of rule generation in the Integrated
DFM Learning Platform, we selected 12 positive and 10
negative examples – note that we did not select all positive
instances. The rule that was generated is as follows:

new_feature(A) :- facetype(A,surface_of_revolution),
 adjacentface(A,B),
 notconcave(B).

When this rule is evaluated on the target part, it finds 48

instances of pad fillets. Of these 48 instances, 41 are same
as our ground truth and the remaining 7 are not pad fillets
so we need to iterate in order to refine the rule.

In the second iteration, we added the 7 incorrect instanc-
es as additional negative instances; so this run used 12 pos-
itive and 17 negative instances. The new rule that was gen-
erated is as follows:

new_feature(A) :- facetype(A,surface_of_revolution),
 adjacentface(A,B),
 notconcave(B),
 adjacentface(A,C),
 facetype(C,planar).

The evaluation of this rule matched exactly the ground
truth and so we can stop iterating the rule generation pro-
cess. Note that this automatically generated rule is much
simpler than the one that was manually authored.

In general, if ground truth is not available then the rule
can be evaluated on additional parts to see what feature in-
stances are identified or a SME can evaluate the rule.

Results
The Integrated DFM Learning Platform described in this
paper has been implemented and has been used in automat-
ically generating feature recognition rules. We have been
successful in generating rules for simple features like de-
pression and protrusion (Brousseau, Dimov, and Setchi
2008), we have also shown that we can generate rules for
recognizing more complex features that may include nu-
merical attributes (e.g. spot face rule). Some of the features
for which we have successfully generated rules are as fol-
lows
• taper
• pad fillet
• spot face
• flange face
• candidate angled face (face that should be converted to

angled faces so as to reduce manufacturability cost)
For these features, the rules generated had accuracy 1.

Further for taper and spot face features it took a single iter-
ation to generate the final rule. For pad fillet and flange
face it took 2 iterations to achieve the final rule. For the
candidate angled faces we had 3 small sample parts and
since we process one part at a time, it took 3 iterations.
Note also that the number of iterations needed is dependent
on how many and which positive and negative examples
are selected.

Related Work and Conclusions
Since a vast amount of domain knowledge has already
been captured in text, considerable effort has been made in
extracting this written knowledge into formal models, see
(Wong, Liu, and Bennamoun 2012) for a survey of various
approaches. Most of this effort has been in extracting con-
cepts and relationships between the concepts and repre-
senting it in a semantic model. There has also been work in
extracting rules from manufacturing handbooks (Kang et
al. 2015).

In this paper we have considered how we can automate
the capture of domain knowledge by applying Inductive
Logic Programming to positive and negative instance data.
We have shown this by developing an Integrated DFM
Learning Platform for generating feature recognition rules
from complex parts. This platform is currently in use for

Rule FindPadFillet3
if
 f0 is a Surface_Of_Revolution
 f0 has edge e1
 e1 has edgeAdjacencyType TANGENT
 e1 is a Circular
 f0 has edge e2
 e1 != e2
 e2 has edgeAdjacencyType TANGENT
 e2 is a Circular
 e2 has connectedFaces f2
 f2 is a Cylindrical
 concave of f2 is false
 e1 has connectedFaces f1
 f0 !=f1
 f1 != f2
 // f1 and f2 do not share any vertices
 lv1 is list(f1,edge,xe1, xe1,endpoint,v,
 f2,edge,xe2, xe2,endpoint,v)
 listLength(lv1) = 0
 fillet1=getInstance(PadFillet, featureFace,f0,
 bottomFace,f2, bottomEdge,e2)
then
 otherFace of fillet1 is f1
 calculateAngle of fillet1 is false
 featureName of fillet1 is “Pad Fillet”.

Figure 7. Manually Authored Rule for Pad Fillet.

4033

providing early manufacturability feedback in an industrial
setting.

Acknowledgments
The authors would like to thank Christine Furstoss, Global
Technology Director for Materials and Manufacturing &
Materials Technologies at GE Global Research, for
supporting this project. The authors also thank Terri Jia for
helping to develop the code base and rules used for testing
ILP techniques; and to Mike Graham and Dean Robinson
for their comments and feedback.

 References
Babic, B.; Nesic, N.; and Miljkovic, Z. 2008. A Review of Auto-
mated Feature Recognition with Rule-Based Pattern Recognition.
Computers in Industry 59(4): 321-337.
 Bratko, I.; and Muggleton, S. 1995. Applications of Inductive
Logic Programming. Communications of the ACM 38(11): 65-70.
Brousseau, E.; Dimov, S.; and Setchi, R. 2008. Knowledge Ac-
quisition Techniques for Feature Recognition in CAD Models.
Journal of Intelligent Manufacturing 19(1): 21-32.
Chen, D. L.; and Mooney, R.J. 2011. Learning to Interpret Natu-
ral Language Navigation Instructions from Observations. In Pro-
ceedings of the 25th AAAI Conference on Artificial Intelligence,
859-86.
Crapo, A.; and Moitra, A. 2013. Toward a Unified English-like
Representation of Semantic Models, Data and Graph Patterns for
Subject Matter Experts. International Journal of Semantic Com-
puting 7(3): 215-236.
Faruquie, T. A.; Srinivasan, A.; and King, R.D. 2013. Topic
Models with Relational Features for Drug Design. Inductive Log-
ic Programming, Springer Berlin Heidelberg, 45-57.
Kang, S.; Patil, L.; Rangarajan, A.; Moitra, A.; Jia, T.; Robinson,
D.; and Dutta, D. 2015. Extraction of Manufacturing Rules from
Unstructured Text Using a Semantic Framework. ASME 2015 In-
ternational Design Engineering Technical Conferences and
Computers and Information in Engineering Conference. Ameri-
can Society of Mechanical Engineers.
Muggleton, S. 1991. Inductive Logic Programming. New Genera-
tion Computing 8(4): 295–318.
Muggleton, S. 1995. Inverse Entailment and Progol. New Gener-
ation Computing Journal 13(3-4): 245-286.
Phelan, K.; Wilson, C.; and Summers, J.D. 2014. Development of
a Design for Manufacturing Rules Database for Use in Instruction
of DFM Practices. ASME 2014 International Design Engineering
Technical Conferences and Computers and Information in Engi-
neering Conference. American Society of Mechanical Engineers.
Radhakrishnan, R.; Amsalu, A.; Kamran, M.; and Nnaji, B. O.
1996. Design Rule Checker for Sheet Metal Components using
Medial Axis Transformation and Geometric Reasoning. Journal
of Manufacturing Systems 15(3): 179-189.
Rangarajan, A.; Radhakrishnan, P.; Moitra, A.; Crapo, A.; and
Robinson, D. 2013. Manufacturability Analysis and Design Feed-
back System Developed using Semantic Framework. In Proceed-
ings of the ASME 2013 International Design Engineering Tech-

nical Conferences & Computers and Information in Engineering
Conference, American Society of Mechanical Engineers.

Wang, Q. 2012. Developing a Computational Framework for Ex-
planation Generation in Knowledge-Based Systems and its Ap-
plication in Automated Feature Recognition. Ph.D. Diss. RMIT
University.

Wong, W.; Liu, W.; and Bennamoun, M. 2012. Ontology Learn-
ing from Text: A Look Back and into the Future. ACM Compu-
ting Surveys (CSUR), 44(4), 20.

Wielemaker, J.; Schrijvers, T.; Triska, M.; and Lager, T. 2012.
SWI-Prolog. Theory and Practice of Logic Programming 12(1-2):
67-96.

4034

