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Abstract

Boliden Tara Mines Ltd. consumed 184.7 GWh of electric-
ity in 2014, equating to over 1% of the national demand of
Ireland or approximately 35,000 homes. Ireland’s industrial
electricity prices, at an average of 13 c/KWh in 2014, are
amongst the most expensive in Europe. Cost effective elec-
tricity procurement is ever more pressing for businesses to re-
main competitive. In parallel, the proliferation of intelligent
devices has led to the industrial Internet of Things paradigm
becoming mainstream. As more and more devices become
equipped with network connectivity, smart metering is fast
becoming a means of giving energy users access to a rich
array of consumption data. These modern sensor networks
have facilitated the development of applications to process,
analyse, and react to continuous data streams in real-time.
Subsequently, future procurement and consumption decisions
can be informed by a highly detailed evaluation of energy us-
age. With these considerations in mind, this paper uses vari-
able energy prices from Ireland’s Single Electricity Market,
along with smart meter sensor data, to simulate the schedul-
ing of an industrial-sized underground pump station in Tara
Mines. The objective is to reduce the overall energy costs
whilst still functioning within the system’s operational con-
straints. An evaluation using real-world electricity prices and
detailed sensor data for 2014 demonstrates significant sav-
ings of up to 10.72% over the year compared to the existing
control systems.

Introduction

Today, the majority of electricity consumers pay a flat rate,
with some suppliers offering a number of variations such as
time-of-use schemes where the rate will change depending
on the time of day, week, or month. However, with such
schemes the price will only fluctuate marginally as com-
pared with changes in wholesale price.

Many industries require continuity with their business ac-
tivities and can only re-schedule electricity usage for short
periods of time. Thus, in some cases these schemes do not
incentivise reductions in consumption as the savings are not
offset by the losses in profit.
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Electricity suppliers purchase electricity from the whole-
sale market and sell it to the consumer at fixed rates. This
rate absorbs the risk of fluctuations in wholesale price and
incorporates it into the flat price. The risk factor contributes
to an overall higher flat rate calculated and charged at the
suppliers’ discretion. In addition to this, the flat rate typi-
cally includes the raw cost of electricity, administration, sup-
plier fuel hedges, and supplier profit margins.

(Kirschen 2003) highlights that when consumers pay vari-
able electricity prices the levels of awareness increases to
how time can influence electricity price and ultimately leads
to developing initiatives that maximise the value of con-
sumption. This paper proposes one such initiative by ex-
amining the following:

• a detail of the electricity usage at Tara Mines1 specifically
in the area of pumping;

• an analysis of the workings of Ireland’s Electricity Mar-
kets and the present opportunity to achieve savings using
real-time variable prices;

• the acquisition and fusion of sensor data such as flow me-
ters, radar water level sensors, and smart energy meters to
study the workings of Pump Station #1 at Tara Mines;

• a formalisation of the pump station system constraints and
energy-focused objective function; and

• a simulation of optimisation techniques to minimise en-
ergy costs using real-world sensor and market data, while
comparing to a variety of baselines and existing control
mechanisms.

Motivation

The Emergence of Smart Metering

One recent emerging opportunity of the smart grid is the
development of schemes by energy suppliers to allow cus-
tomers to directly respond to variable pricing. It has been
identified that smart meters can enable variable pricing by
tracking energy consumption at 15 minute intervals, giving
consumers the possibility to understand and adjust usage to
price curves in a timely manner. Policy makers in Europe

1
http://www.boliden.com/Operations/Mines/Tara/
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have focused heavily on the roll-out of smart meters in re-
cent years, however, little attention has been given to ensure
suppliers offer customers more advanced tariff schemes to
coincide with these new levels of energy awareness. It is
thought that if clear time-flexible pricing signals are commu-
nicated to customers then they can have the potential to save
substantial amounts of money (Faruqui, Harris, and Hledik
2010).

Variable Electricity Price Opportunity

The Irish wholesale electricity prices vary at half hour
intervals; in 2014, this ranged from a minimum of
e4.69/MWh to a maximum of e955.38/MWh. Fluctua-
tions in price can be considerable with a standard deviation
of e37.3/MWh from mean prices of e56.9/MWh, even ex-
ceeding e600/MWh on many occasions. These variations
offer the potential for large cost savings if energy intensive
activities can be rescheduled to avoid the peaks and, where
possible, increase workloads in the more cost effective val-
ley periods.

Energy Cost-Aware Scheduling

(Ifrim, O’Sullivan, and Simonis 2012) developed models
to accurately predict real-time energy price and used this
knowledge to achieve significant energy cost savings in a
scheduling context. They were able to make more accu-
rate price predictions than those of the market operator’s
own forecast, SEMO (Single Electricity Market Operator).2
(Grimes et al. 2014) studied the potential of using a method-
ology to construct energy cost-aware consumption schedules
in an Irish industrial setting by developing price forecasts
and scheduling usage from these forecasts. The schedules
produced cost savings in contrast to cost-unaware schedules
based on a flat tariff. As such, large industrial energy con-
sumers can benefit from variable pricing structures even un-
der usage constraint complexities and time-sensitive produc-
tion processes.

(Aikema, Kiddle, and Simmonds 2011) and (Qureshi et
al. 2009) also used scheduling techniques to make signifi-
cant savings in the context of data-centre optimisation.

Mine Dewatering

The predominant energy consuming tasks in underground
mining operations are crushing, conveying, ventilation, and
pumping. Pumping is one of the most important tasks, using
10% of all energy. It has a significant cost of approximately
e2.5M annually at the mine considered here. Water can en-
ter the mine in three different ways: natural ground water,
service water for the mining operation, and as a transport
medium to push backfill cement down pipes to fill previ-
ously mined areas. Water flows in the mine by either free
flowing in ground channels or by being pumped through
pipelines. All the free flowing water from upper mine lev-
els is collected at central sumps where a flocculant is added
to accelerate deposition of fine material. To provide opera-
tional continuity and to avoid flooding of critical infrastruc-
ture, certain areas of the mine need to be kept water free

2http://www.sem-o.com/

and therefore water needs to be removed by pumping it to
the surface. In the south-western section of the mine, wa-
ter is diverted to horizontal sumps (mined out pits used to
store water). The fine material settles within the sumps and
a filtering system clarifies the overflow water prior to enter
Pump Station #5. After a period of time, collected fine mate-
rial at the bottom of the sumps is allowed to dry out, the bar-
riers are removed and the fines are dug out. With an average
flow of 260m3/h, Pump Station #5, transfers the cleaned
water through a 300mm pipe over a distance of more than
2km and a vertical ascent of 500m to join the cleaned water
from the upper levels of the mine, this water is collected in
sumps before being pumped to surface by the main pump
station, called Pump Station #1. Pump Station #1, to be ex-
amined in this paper, consumed 79,981 MWh of electricity
in 2014 and is the largest pump station in the mine. At stan-
dard industrial retail prices of 13c/KWh, its total operating
cost was roughly e1,039,757. One of the main benefits of
energy cost-aware scheduling for mine water systems is the
ability to retain water in the sumps, deferring pumping until
cheaper prices are on the horizon. This fact, together with
the possibility to run a combination of pumps concurrently
to vary output flow speeds, gives a large degree of flexibility
with which to optimise energy cost.

Pump Station #1: Current Practices, Challenges,
and Opportunities

The operation of Pump Station #1 is a complex task involv-
ing the running of four pumps to regulate water levels in
sump storage to meet the dewatering requirement from all
of the mine. The station is equipped with two twin capac-
ity centrifugal pumps with an output flow capable of up
to 950m3/h on average. The station has residual capac-
ity greater than its demand requirement in reserve as a pre-
caution for peak water load situations. Figure 1 depicts the
four pumps, sumps, pipe connections and civil structure that
make up the pump station. Water is pumped from Pump Sta-
tion #5 to Sump 1 located in Pump Station #1. An overflow
from a Lamella which treats sediment water runs into Sump
3 and then Sump 2 and then subsequently to Sump 1.

Today, the PLC (Programmable Logic Controller) con-
trolled station is programmed to use a “duty-standby” con-
figuration whereby if water levels in Sump 1 exceed a start
set-point a pump will start to operate, corresponding to this
if the water level in the sump drops to the stop level the
pump will stop. Thus, the management of high water lev-
els are dealt with by increasing the number of concurrently
running pumps to adjust the output flow rate as appropriate
until water levels in the sump are reduced. The sump level
set-points have been refined over a number of years by ex-
perienced engineers and as a result it operates with a great
deal of reliability. However, variable energy prices has not
been considered in its development.

Water Flow and Sump Storage Capacities

Treated water flows in overflow form with a cascade effect
as part of an incremental filtration process from Sump 3 to
Sump 2 to Sump 1 at a constant rate of 275m3/h (See Fig-
ure 2). The flow to Sump 1 remains at this constant rate once
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Figure 1: Schematic Pump Station #1

Figure 2: Water Flows

Sump 3 and Sump 2 are at adequately high levels. Based on
analysis of past data, these levels remain consistent between
60% and 80% to provide this flow. As sediments can cause
pump life to shorten, the sump overflows are created by de-
sign to ensure the water that reaches Sump 1 is as sediment-
free as possible. This is done by allowing rock fine parti-
cles to settle at the bottom of the sumps and removed once
there is adequate build up. Sump 1 has a storage capacity of
1100m3. The dewatering demand flowing into Sump 1 has
two sources: a constant overflow from the upper mine levels,
and a fluctuating flow through a pipeline from Pump Station
#5 in the lower mine. It is not recommended for Sump 1
levels to go under 10% or over 90%. This buffer is required
as the capacity will slowly adjust as sediments settle to the
bottom of the sump.

Single Electricity Market Operator (SEMO)

Understanding the operations of SEMO, Ireland’s electric-
ity market, is essential to scheduling consumption with dy-
namic market prices. SEMO operates a mandatory pool
market, where all electricity on the island of Ireland is
bought and sold. Sale and purchase from the pool is com-
pleted with a code of practice by which generators sell to
the pool at the marginal cost of producing a unit of electric-
ity e/MWh known as the System Marginal Price (’SMP’).

Figure 3: SEMO Market Publication Times

The market operates by stacking generator bids in order
of price, cutting the stack at the point which makes up the
demand to be met on the day of consumption. This process
is completed a day in advance known as the Ex-Ante mar-
ket (SEMO 2014). On the day Eirgrid, the system operator,
communicates in real-time to all the generators to start up
or turn off to balance demand. Of course, it is not possible
to know all price influencing factors in advance and so to
promote market efficiency the market executes several fore-
cast price runs before electricity is consumed on the day,
e.g., the Ex-Ante 1 (‘EA1’), the day ahead forecast Ex-Ante
2 (‘EA2’), the day ahead forecast Within Day 1 (‘WD1’).
This price data is released to market participants at different
intervals throughout the trading day through a series of pub-
lications (See Figure 3). A settlement price, the Ex-Post 2
(EP2), is reached four days after consumption. Factoring in
the actual happenings of the day, this is the actual price paid
by market stakeholders.

Since it’s impossible to determine exactly what will hap-
pen beforehand, the actual cost will differ to the forecast.
Table 1 shows a e0.74 difference in mean and e4.67 differ-
ence in standard deviation between WD1 and EP2 prices.

Table 1: Forecast & Settlement Prices 2014 - SEMO
Price Mean Std. Dev. Min Max Range

EA2 55.01 28.88 18.46 471.58 453.12
WD1 56.16 32.63 12.6 488.36 475.76
EP2 56.9 37.3 4.69 955.38 950.69

Electricity is unique compared to most other commodi-
ties as it cannot be stored economically with current tech-
nology. Consequently this gives rise to large fluctuations
in wholesale price due to factors such as transmission con-
gestion, generator maintenance, technical constraints, fuel
prices, generator efficiency, generator start-up costs and de-
mand fluctuations, etc. (Enright 2013). Ireland has wit-
nessed a significant uptake of renewable wind generation
in recent years which, given the intermittent nature of this
energy form, further adds to the price volatility. Figure 4
illustrates a typical trend from a sample day (31/10/2014).
The potential to use market forecasts is evident when one
considers the prospect of moving energy usage within the
day. The differences in the price profiles between the EA2,
WD1, and EP2 are shown over a 24 hour period. Although
prices differ quantitatively overall, a common feature of the
EA2 and WD1 forecast fluctuations is their ability to iden-
tify movements in EP2 settlement prices.

In fact, if we examine the covariance matrix associated
with each price on the diagonal axes in Figure 5, the red
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Figure 4: Sample EA2, WD1 & EP2 price runs

Figure 5: SEMO price runs covariance plot matrix

lines indicate linear patterns between all EA2, WD1, and
EP2 prices over all of 2014.

System Architecture

An extensive underground fibre optic network connects a
PLC network to all fixed electrical equipment underground.
Monitoring of this equipment is done using a Supervisory
Control and Data Acquisition (SCADA) system. SCADA
is a computer system for gathering and analysing real-time
data used to monitor and control a large variety of industrial
equipment. Pump Station #1 is equipped with piezometer
water level sensors, flow meters and smart energy meters
providing complete coverage of all sump levels, electricity
usage and flow rate data. The KWh readings on the four
pumps are acquired from smart meters recorded at 15 minute
intervals sourced from an Energy Management System.

Figure 6 depicts the high-level architecture of the schedul-
ing system. Data is combined from the smart meters con-
nected to the energy management system with water level
and flow sensors in the SCADA together with market price
data. This is fed into the optimisation model to produce op-

Figure 6: Operational Architecture

erational schedule for the pump station.

Operational Plan. An optimisation model is run every
15 minutes which considers a two hour planning horizon.
The outcome decides the pumping configuration for the next
time period while considering the current sump levels, a
forecast of the mine dewatering demand, and the forecasted
price vector. The model is re-run at the next interval with
the latest sump levels, reflecting the actual demand which
occurred.

Pump Station #1

A series of interviews with engineers elicited a number of
practical concerns and constraints on the operation of the
pump station.

The pump station is composed of four pumps, each vary-
ing in pumping capacity and energy consumption. In the-
ory, 24 configurations of the four pumps are possible, how-
ever due to operational constraints with control systems we
considered only five active configurations chosen by the en-
gineers. These configurations, along with their respective
pumping capacity and power consumption are listed in Ta-
ble 2.

Table 2: Mode Configurations
P1 P2 P3 P4 Flow Power

OFF OFF ON OFF 480m3/h 692KW
ON OFF ON OFF 628m3/h 1000KW
ON ON ON OFF 640m3/h 1204KW
ON ON OFF ON 776m3/h 1288KW
ON ON ON ON 910m3/h 1716KW

Note that the net flow when multiple pumps are running
is not simply a linear combination of their individual flows
due to the physical behaviour of varying pressures and pipe
resistance. Additionally, in practice, the pumping flow and
power consumption vary from design specification and de-
grades over time, therefore the values presented have been
recorded empirically from localised sensor data and need to
be updated periodically.

In order to prolong the overall lifespan of the pumps they
should not be cycled on/off rapidly, and so, the motor duty is
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modelled at a minimum active time of 15-minute intervals,
mainly to avoid overheating.

Forecasting Mine Dewatering Demand

Pump Station #1’s fluctuating pumping demand will depend
on the levels of ground water in the mine and whether or
not pockets of underground water aquifers are hit during the
mining processes. Removal of this water in both situations
is done by discretionary pumping into the ground channels
or directly to the sumps using portable submersible water
pumps. Hence, the timing and occurrence of these events
carry a very high degree of uncertainty, no periodicity or
seasonality.

Data is acquired from flow meters at intermediate pump
stations in the lower south west sections of the mine, this
water will eventually flow to Pump Station #5 and subse-
quently pumped to Pump Station #1. Thus, this data is used
as an indicator of the future pumping demand after a certain
time delay. The forecast demand is produced by monitor-
ing the intermediate pump station flow output and adding
ground water estimations issued from geological reports of
the area to the flow.

A constant of 130m3/h obtained from geological esti-
mates of ground water in the area is added to the interme-
diate sump flow time series to make up the full flow that
enters Pump Station #5. A cross correlation function is then
computed to identify the lags of intermediary pump stations
xt and Pump Station #1 demand yt. A multiple regression
is used where yt is the linear function of lags of the inter-
mediate sump variables, the model works well with all coef-
ficients being statistically significant. The regression model
resulted in a mean absolute percentage error of 7.36% and
root mean squared error of 17.74. However, given that it is
not possible to assume the forecast demand will be perfectly
accurate, the sump levels are updated before each iteration
using the actual levels recorded from sensor data.

Optimisation Model

The following notation will be used in the optimisation
model: m is a configuration from set of pumping configura-
tions M , fm and pm, respectively, correspond to the pump-
ing flow and power consumption for configuration m. t is
the time index from a time horizon T , dt is the forecasted
demand into the sump at time t, and ct is the forecasted elec-
tricity price at time t. Additionally, we have the inital sump
level v0, and inventory cost q to penalise the final sump level.

The variables consist of Boolean variables xmt to say if
configuration m is active at time t, and integer variables vt
corresponding to the volume of the sump at time t. For
flooding concerns, the level of the sump s1 should not go
above 80% or below 20% of its capacity as it could be pump-
ing some residual sediment. Only the working capacity of
the 20-80% range will be modelled by the vt variables.

The model consists of the following constraints. At most
one configuration can be active at any one time point:

∀t ∈ T :
∑

m∈M

xmt ≤ 1.

The sump volume is channelled between time points as
the sum of the level at the previous time point, plus the new
incoming demand, minus any pumping which was done:

∀t ∈ T : vt+1 = vt + dt −
∑

m∈M

xmt · fm.

The objective is to minimise the energy cost of all active
pumping configurations across the time horizon but also to
include a penalty for the final sump volume. This is to avoid
the optimisation leaving the sump full at the final time point,
but an alternative method could be to extend the time horizon
considered:

minimise
∑

m∈M

∑

t∈T

xmt · pm · ct + v|T | · q.

Evaluation

All simulations were run over a period 363 days in 2014
from the 2nd of January 2014 to the 30th of December 2014,
resulting in 4356 two hour sliding time horizon optimisa-
tions. The model uses two hours as the highly volatile de-
watering demand can only be meaningfully forecasted over
this horizon. In each case the optimisation problem was
solved using Numberjack3 and a Mixed Integer Program-
ming solver, SCIP 3.1.0.4

To solve the optimisation model for a single 2 hour hori-
zon required a maximum of 12.6 seconds, minimum of 0.03
seconds, average of 0.7 seconds and a standard deviation
of 1.1 seconds on Mac OS Yosemite with a 2.26 GHz Intel
Core 2 Duo processor and 8 GB of RAM. This short solving
time enables the system to react very quickly to the situa-
tion, which is an important consideration in such a dynamic
scheduling scenario.

Evaluation Baselines

Baseline A: Oracle. Here a schedule is realised with per-
fect knowledge of price and demand using EP2 and actual
demand sensor data. This is the optimal schedule and pro-
vides a lower bound on the potential savings. Such an om-
niscient oracle schedule has a cost of e400,983, which was
used as a lowerbound baseline for all other schedule simula-
tions.

Baseline B: Existing control. The existing configuration
was not created to consider variable price, however, to mea-
sure the cost advantages of optimising, running existing op-
eration against market prices should realistically be more
cost effective than existing control using EP2 prices. Indeed,
we see that existing control costs e457,930 giving a 14.27%
difference from the oracle solution.

Baseline C & D: EA2 and WD price forecasts. Due to
the real-time nature of the schedule, adequate time is avail-
able to use both EA2 and WD1 forecasts and so a simulation
is completed using both price vectors to determine which has
the most cost effective outcome. EA2 prices cost e415,354,

3http://numberjack.ucc.ie/
4http://scip.zib.de/
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Table 3: Results of Cost-Aware Schedules

Baseline
〈
Schedule, Demand, Tariff

〉
m3 KWh Cost % Diff. e/m3

A. Perfect Knowledge
〈
EP2,Actual,EP2

〉
4,679,160 7,955,041 e400,983 0% 0.0856955

B. Existing Control
〈
Set-Points,Actual,EP2

〉
4,676,247 8,006,250 e457,930 14.27% 0.0979268

C. EA2 Forecast
〈
EA2,Actual,EP2

〉
4,679,541 7,945,439 e415,354 3.56% 0.0887596

D. WD1 Forecast
〈
WD1,Actual,EP2

〉
4,679,182 7,974,137 e416,284 3.82% 0.0889651

E. WD1& Dewater Forecast
〈
WD1,Forecast,EP2

〉
4,678,491 7,967,075 e415,156 3.55% 0.0887371

a 3.56% difference from the oracle solution, WD1 prices at
e416,284 show a 3.82% difference and 0.74% to EA2 fore-
casts. This is an interesting result as although WD1 contains
more market data than EA2, it does not exhibit any notable
advantage over the EA2 schedule. Both schedules are close
to the oracle schedule (c.3% difference).

Baseline E - Simulating with WD1 & Dewatering De-
mand Forecasts. Simulating a real-life scenario using the
dewatering forecast and WD1 price forecasts, a cost of
e415,156 is observed. Results show a 10.72% cost reduc-
tion from Baseline E to the existing control of Baseline B,
representing a significant advantage. Marginal differences
between scheduling EA2 and WD1 forecasts is noted with
EA2 exhibiting 0.26% more accuracy.

Conclusions

We studied an intelligent system for real-time optimisation
of an underground mine pumping operation. The system
uses a number of AI techniques to predict a highly volatile
pumping demand and schedule pumping operations, while
minimizing the overall electricity cost. Simulation results
show significant saving opportunities using a real-time en-
ergy price, displaying a saving of 10.72% over the existing
control, equating to roughly e40,000 on the wholesale cost
annually. Such annual savings demonstrate the effectiveness
of using AI to make real-time consumption decisions.

The deployment of such a system is dependent on the pro-
curement of the market’s real-time energy price. At the mo-
ment, the considered operation is billed on a two-rate time
of day tariff. Switching to a real-time price is not a deci-
sion to be made without due consideration to the overall en-
ergy consumption, not just a single pumping operation. This
paper serves as a proof of concept for applying intelligent
optimisation to a large, dynamic real-world system.

In future, we plan to apply similar techniques to additional
components in the mine operations such as the autogenous
mill which consumes the majority of the overall electricity.
We hope such an extension will enable the adoption of a
real-time energy price to be realised in the near future.

Disclaimer

Any views or opinions expressed in this paper are those of
the author(s) and not of Boliden Tara Mines Ltd. Tariff rates
used are industry standard for 2014 (Statista 2014).
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