Proceedings of the Twenty-Eighth AAAI Conference on Innovative Applications (IAAI-16)

Data-Augmented Software Diagnosis

Amir Elmishali, Roni Stern and Meir Kalech

Ben Gurion University of the Negev
Be’er Sheva, Israel

Abstract

Software fault prediction algorithms predict which software
components is likely to contain faults using machine learning
techniques. Software diagnosis algorithm identify the faulty
software components that caused a failure using model-based
or spectrum based approaches. We show how software fault
prediction algorithms can be used to improve software di-
agnosis. The resulting data-augmented diagnosis algorithm
overcomes key problems in software diagnosis algorithms:
ranking diagnoses and distinguishing between diagnoses with
high probability and low probability. We demonstrate the ef-
ficiency of the proposed approach empirically on three open
sources domains, showing significant increase in accuracy of
diagnosis and efficiency of troubleshooting. These encourag-
ing results suggests broader use of data-driven methods to
complement and improve existing model-based methods.

Introduction

Software is prevalent in practically all fields of life, and its
complexity is growing. Unfortunately, software failures are
common and their impact can be very costly. As a result,
there is a growing need for automated tools to identify soft-
ware failures and isolate the faulty software components,
such as classes and functions, that have caused the failure.
We focus on the latter task, of isolating faults in software
components, and refer to this task as software diagnosis.
Model-based diagnosis (MBD) is an approach to auto-
mated diagnosis that uses a model of the diagnosed system
to infer possible diagnoses, i.e., possible explanations of the
observed system failure. While MBD was successfully ap-
plied to a range of domains (Williams and Nayak 1996;
Feldman et al. 2013; Struss and Price 2003; Jannach and
Schmitz 2014), it has not been applied successfully yet to
software. The reason for this is that in software develop-
ment, there is usually no formal model of the developed soft-
ware. To this end, a scalable software diagnosis algorithm
called Barinel has been proposed (Abreu, Zoeteweij, and van
Gemund 2011). Barinel is a combination of MBD and Spec-
trum Fault Localization (SFL). SFL considers traces of ex-
ecutions, and finds diagnoses by considering the correlation
between execution traces and which executions have failed.

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4003

While very scalable, Barinel suffers from one key disadvan-
tage: it can return a very large set of possible diagnoses for
the software developer to choose from. To handle this disad-
vantage, Abreu et al. (2011) proposed a Bayesian approach
to compute a likelihood score for each diagosis. Then, diag-
noses are prioritized according to their likelihood scores.

Thanks to the open source movement and current software
engineering tools such as version control and issue tracking
systems, there is much more information about a diagnosed
system than revealed by the traces of performed tests. For
example, version control systems store all revisions of ev-
ery source files, and it is quite common that a bug occurs
in a source file that was recently revised. Barinel is agnos-
tic to this data. We propose a data-driven approach to better
prioritize the set of diagnoses returned by Barinel.

In particular, we use methods from the software engineer-
ing literature to learn from collected data how to predict
which software components are expected to be faulty. Then,
we integrate these predictions into Barinel to better prioritize
the diagnoses it outputs and provide more accurate diagnosis
likelihood estimates.

The resulting data-augmented diagnosis algorithm is part
of a broader software troubleshooting paradigm that we call
Learn, Diagnose, and Plan (LDP). In this paradigm, illus-
trated in Figure 1(a), the troubleshooting algorithm learns
which source files are likely to fail from past faults, previous
source code revisions, and other sources. When a test fails, a
data-augmented diagnosis algorithm considers the observed
failed and passed tests to suggest likely diagnoses leverag-
ing the knowledge learned from past data. If further tests are
necessary to determine which software component caused
the failure, such test are planned automatically, taking into
consideration the diagnoses found. This process continues
until a sufficiently accurate diagnoses is found.

We implemented this paradigm and evaluated its execu-
tion on a popular open source software projects. In particu-
lar, we demonstrated how the required data can be extracted
from common software engineering tools like the Git ver-
sion control and the Bugzilla issue tracking systems was
used, as illustrated in Figure 1(b) and explained in the ex-
perimental results.

Results show a huge advantage of using our data-
augmented diagnoser over Barinel with uniform priors for
both finding more accurate diagnoses and for better select-

Server Logs

W Source Code
Version
Control System \ / /
Al Engine

Al Engine

Issue Tracking
System

QA Tester «

. }"‘

(a) Learn, Diagnose, and Plan Paradigm

Source Code

(®Bugzilla

QA Tester \Develoger
(V4

s < N

(b) Our current implementation

[osit |
N

Al Engine

Figure 1: The learn, diagnose, and plan paradigm and our implementation.

ing tests for troubleshooting. Moreover, to demonstrate the
potential benefit of our data-augmented approach we also
experimented with a synthetic fault prediction model that
correctly identifies the faulty component. As expected, us-
ing the synthetic fault prediction model is better than using
the learned fault prediction model, thus suggesting room for
further improvements in future work. To our knowledge, this
is the first work to integrate successfully a data-driven ap-
proach to a software diagnosis algorithm.

Related Work

Hofer and Wotawa introduced a new approach, Spectrum
ENhanced DYnamic Slicing (Hofer, Wotawa, and Abreu
2012; Hofer and Wotawa 2012), which combines SFL with
slicing hitting set computation (Wotawa 2010). The method
they propose computes slices for all faulty variables in all
failing test cases. A slice is a subset of a program which be-
haves like the original program for a given set of variables
(Weiser 1982). Then the diagnoses are computed by a hit-
ting set algorithm based on Reiter’s HS-tree (Reiter 1987).
The SFL approach assists to compute the fault probabilities
based on both the failed tests as well as the passed tests. The
advantage of combining SFL and SHSC lies in the use of
slicing approach to distinguish statements occurring in the
same basic building block, as well as analyzing the execu-
tion information from both passing and failing test cases as
done in SFL. Learning the prior probabilities, as proposed in
this paper, is orthogonal to the fault localization approach.
We demonstrate its benefits in relation to SFL, but in the
same manner it might assist to Spectrum ENhanced DY-
namic Slicing.

Faults in spreadsheets is a good example for the using of
software fault localization methods (Jannach et al. 2014).
Hofer et al. (2013) explicitly proposed to adapt spectrum-
based fault-localization from the traditional programming
domain to spreadsheets. In particular they use SFL to com-
pute the fault probabilities of the spreadsheet cells. Abreu et.
al. (2015) propose a constraint-based approach for debug-
ging spreadsheets based on the user expectations. Diagnosis
candidates are explanations for the misbehavior in user ex-
pectations. Hofer and Wotawa (2014) present a comparison
between a value-based approach and dependency-based ap-

4004

proach and show that the later is much faster than the value-
based approach. We believe that, as we show in software
diagnosis, learning the prior fault probabilities of the cells in
spreadsheets may improve the diagnosis accuracy.

Model-Based Diagnosis for Software

The input to classical MBD algorithms is a tuple
(SD,COMPS,OBS), where SD is a formal description
of the diagnosed system’s behavior, COM PS is the set of
components in the system that may be faulty, and OBS
is a set of observations. A diagnosis problem arises when
SD and OBS are inconsistent with the assumption that all
the components in COM PSS are healthy. The output of an
MBD algorithm is a set of diagnoses.

Definition 1 (Diagnosis). A set of components A C
COMPS is a diagnosis if

A “R(@) A A\ (h(C") ASD AOBS
CeA C'¢A

is consistent, i.e., if assuming that the components in A are
Sfaulty, then S D is consistent with OB.S.

The set of components (COM PS) in software diagnoses
can be, for example, the set of classes, or all functions, or
even a component per line of code. Low level granularity of
components, e.g., setting each line of code as a component,
will result in very focused diagnoses (e.g., pointing on the
exact line of code that was faulty). Focusing the diagnoses
in such way comes at a price of an increase in the computa-
tional effort. Automatically choosing the most suitable level
of granularity is a topic for future work.

Observations (OB.S) in software diagnosis are observed
executions of tests. Every observed test ¢ is labeled as
“passed” or “failed”, denoted by passed(t) and failed(t),
respectively. This labeling is done manually by the tester or
automatically in case of automated tests (e.g., failed asser-
tions).

There are two main approaches for applying MBD to soft-
ware diagnosis, each defining S D somewhat differently. The
first approach requires SD to be a logical model of the cor-
rect functionality of every software component (Wotawa and
Nica 2011). This approach allows using logical reasoning

techniques to infer diagnoses. The main drawbacks of this
approach are that it does not scale well and modeling the
behavior of software component is often infeasible.

SFL for Software Diagnosis

An alternative approach to software diagnosis has been pro-
posed by Abreu et al. (2009; 2011; 2012; 2013), based on
spectrum-based fault localization (SFL). In this SFL-based
approach, there is no need for a logical model of the correct
functionality of every software component in the system. In-
stead, the traces of the observed tests are considered.

Definition 2 (Trace). A trace of a test t, denoted by trace(t),
is the sequence of components involved in running t.

Traces of tests can be collected in practice with common
software profilers (e.g., Java’s JVMTI). Recent work showed
how test traces can be collected with low overhead (Perez,
Abreu, and Riboira 2014). Also, many implemented appli-
cations maintain a log with some form of this information.

In the SFL-based approach, SD is implicitly defined
by the assumption that a test will pass if all the compo-
nents in its trace are not faulty. Let h(C') denote the health
predicate for a component C, i.e., h(C) is true if C is
not faulty. Then we can formally define SD in the SFL-
based approach with the following set of Horn clauses:
Viest (/\ h(C)) — passed(test)

Céctrace(test)

Thus, if a test failed then we can infer that at least one
of the components in its trace is faulty. In fact, a trace of a
failed test is a conflict.

Definition 3 (Conflict). A set of components ' C COMPS
is a conflictif \ h(C)ANSDANOBSE L
cer

Many MBD algorithms use conflicts to direct the search
towards diagnoses, exploiting the fact that a diagnosis must
be a hitting set of all the conflicts (de Kleer and Williams
1987; Williams and Ragno 2007; Stern et al. 2012). In-
tuitively, since at least one component in every conflict is
faulty, only a hitting set of all conflicts can explain the un-
expected observation (failed test).

Barinel is a recently proposed software MBD algo-
rithm (Abreu, Zoeteweij, and van Gemund 2011) based
on exactly this concept: considering traces of tests with
failed outcome as conflicts and returning their hitting sets
as diagnoses. With a fast hitting set algorithm, such as the
STACATTO hitting set algorithm proposed by Abreu et
al. (2009), Barinel can scale well to large systems. The main
drawback of using Barinel is that it often outputs a large
set of diagnoses, thus providing weaker guidance to the pro-
grammer that is assigned to solve the observed bug.

Prioritizing Diagnoses
To address this problem, Barinel computes a score for every
diagnosis it returns, estimating the likelihood that it is true.
This serves as a way to prioritize the large set of diagnoses
returned by Barinel.

The exact details of how this score is computed is given by
Abreu et al. (2009; 2011). For the purpose of this paper, it is

4005

important to note that the score computation used by Barinel
is Bayesian: it computes for a given diagnosis the posterior
probability that it is correct given the observed passes and
failed tests. As a Bayesian approach, Barinel also requires
some assumption about the prior probability of each com-
ponent to be faulty. Prior works using Barinel has set these
priors uniformly to all components. In this work, we propose
a data-driven way to set these priors more intelligently and
demonstrate experimentally that this has a huge impact of
the overall performance of the resulting diagnoser.

Data-Augmented Software Diagnosis

The prior probabilities used by Barinel represent the a-priori
probability of a component to be faulty, without considering
any observed system behavior. Fortunately, there is a line
of work on software fault prediction in the software engi-
neering literature that deals exactly with this question: which
software components are more likely to have a bug. We pro-
pose to use these software fault predictions as priors to be
used by Barinel. First, we provide some background on soft-
ware fault prediction.

Software Fault Prediction

Fault prediction in software is a classification problem.
Given a software component, the goal is to determine its
class — healthy or faulty. Supervised machine learning algo-
rithms are commonly used these days to solve classification
problems. They work as follows. As input, they are given a
set of instances, in our case these are software components,
and their correct labeling, i.e., the correct class for each in-
stance. In our case, the class is whether the software compo-
nent is healthy or faulty. They output a classification model,
which maps an instance to a class.

Learning algorithm extract features from a given instance,
and try to learn from the given labeled instances the relation
between the features of an instance and its class. A key to
the success of machine learning algorithms is the choice of
features used. Many possible features were proposed in the
literature for software fault prediction.

Radjenovic et al. (2013) surveyed the features used by ex-
isting software prediction algorithms and categorizes them
into three families. Traditional. These features are tradi-
tional software complexity metrics, such as number of lines
of code, McCabe (1976) and Halstead (1977) complexity
measures.

Object Oriented. These features are software complexity
metrics that are specifically designed for object oriented pro-
grams. This includes metrics like cohesion and coupling lev-
els and depth of inheritance.

Process. These features are computed from the software
change history. They try to capture the dynamics of the soft-
ware development process, considering metrics such as lines
added and deleted in the previous version and the age of the
software component.

In a preliminary set of experiments we found that the com-
bination of features that performed best is a combination
of 115 features from the features listed by Radjenovic et
al. (2013) worked best. This list of features included the Mc-

Cabe (1976) and Halstead (1977) complexity measures, sev-
eral object oriented measures such as the number of methods
overriding a superclass, number of public methods, number
of other classes referenced, and is the class abstract, and sev-
eral process features such as the age of the source file, the
number of revisions made to it in the last release, the number
of developers contributed to its development, and the num-
ber of lines changed since the latest version.

As shown in the experimental results section, the result-
ing fault prediction model was accurate enough so that the
overall data-augmented software diagnoser be more effec-
tive than Barinel with uniform priors. However, we are sure
that a better combination of features can be found, and this
can be a topic for future work. The main novelty of our work
is in integrating a software fault prediction model into the
software fault localization process.

Integrating the Fault Prediction Model

The software fault prediction model generated as described
above is a classifier, accepting as input a software compo-
nent and outputting a binary prediction: is the component
predicted to be faulty or not. Barinel, however, requires a
real number that estimates the prior probability of each com-
ponent to be faulty. To estimated priors from the fault predic-
tion model, we rely on the fact that most prediction models
also output a confidence score, indicating the model’s con-
fidence about the classified class. Let conf(C) denote this
confidence for component C. We use conf(C') for Barinel’s
prior if C'is classified as faulty, and 1 — conf(C') otherwise.

Obtaining a Training Set

For both learning and testing a fault prediction model, we
require a mapping between reported bug and the source files
that were faulty and caused it. Manually tracking past bugs
and tracing back their root cause is clearly not a scalable
solution. Fortunately, most projects these days use a version
control system and an issue tracking system. Version control
systems, like Git and Mercurial, track modifications done to
the source files. Issue tracking systems, like Bugzilla and
Trac, record all reported bugs and track changes in their sta-
tus, including when a bug gets fixed. A key feature in mod-
ern issue tracking and version control systems is that they
enable tracking which modification to source files are done
in order to fix a specific bug.

Of course, not all files modified when a bug is fixed ac-
tually caused the bug. For example, some bug fixes include
adding a parameter to a function, consequently modifying
all places where that function is called although they could
not be regarded as “faulty” source files. As a crude heuris-
tic to overcome this, we considered for a given bug X only
the source file whose revision were most extensive among
all files associated with fixing bug X . Sliwerski et al. (2005)
proposed a more elaborate method to heuristically identify
the source files that are caused the bug, when analyzing a
similar data set. Being able to automatically generate a train-
ing set highlights one of the main advantages of our work:
it can be applied to any software project that uses a version
control and issue tracking system. Thus, our approach can

4006

Project Start Ver. Files Bugs

CDT (eclipse.org/cdt) 2002 231 8,750 9,091
POI (poi.apache.org) 2002 72 2,810 1,408
Ant (ant.apache.org) 2000 72 1,195 1,176

Table 1: Details on the domains we experimented on.

be readily deployed in such cases.

Experimental Results

We implemented and evaluated the proposed data-
augmented approach as follows. As a benchmark, we used
the source files and bugs reported for three popular open-
source projects: (1) Eclipse CDT, which is an IDE for C/C++
that is part of the Eclipse platform, (2) Apache Ant, which
is a build tool, and (3) Apache POI, which provides a Java
API for Microsoft documents. All projects are written in
Java. Table 1 lists in the columns “Start”, “Ver.”, “Files”,
and “Bugs” when the project started, number of version so
far (including minor version), number of Java source files,
and number of bugs reported and fixed, respectively.

Project Precision Recall ~ F-Measure AUC
ANT 0.206 0.175 0.189 0.775
CDT 0.550 0.086 0.149 0.846
POI 0.280 0.252 0.265 0.845

Table 2: Evaluating the fault prediction models.

All three projects use the Git version control system and
the Bugzilla issue tracking system. For each project, we used
the last version as a test set and the 4 versions before it as a
training set. The first set of results we report is the quality of
our fault prediction model on these three benchmarks. The
Weka software package (www.cs.waikato.ac.nz/ml/weka)
was used to experiment with several learning algorithms.
In a preliminary comparison we found the Random forest
learning algorithm to perform best in our domains. Table 2
shows the precision, recall, F-measure, and AUC of the fault
prediction models generated by Random forest (with 1,000
trees) for each of the benchmark projects. Precision, re-
call, F-measure, and AUC are standard metrics for evalu-
ating classifiers. In brief, precision is the ratio of faulty files
among all files identified by the evaluated model as faulty.
Recall is the number of faulty files identified as such by the
evaluated model divided by the total number of faulty files.
F-measure is a known combination of precision and recall.
The AUC metric addresses the known tradeoff between re-
call and precision, where high recall often comes at the price
of low precision. This tradeoff can be controlled by setting
different sensitivity thresholds to the evaluated model. AUC
is the area under the curve plotting the accuracy as a func-
tion of the recall (every point is a different threshold value).
All metrics range between zero and one (where one is op-
timal) and are standard metrics in machine learning and in-
formation retrieval. The unfamiliar reader can find more de-

tails in Machine Learning books, e.g. Mitchell’s classical
book (Mitchell 1997).

As the results show, while AUC scores are reasonable, the
precision and especially recall results are fairly low. This
is understandable, as most files are not faulty, and thus the
training set is very imbalanced. An imbalanced data set is a
known inhibitor of the performance of standard learning al-
gorithms. We have experimented with several known meth-
ods to handle imbalanced datasets, such as SMOTE and ran-
dom under sampling, but these did not produce substantially
better results. However, as we show below, even this im-
perfect prediction model is able to improve existing data-
agnostic software diagnosis algorithm.

Diagnosis Performance

Next, we evaluated our data-augmented diagnoser when us-
ing the fault prediction model evaluated above. The input
is a set of tests, with their traces and outcomes and the
output is a set of diagnoses, each diagnosis having a score
that estimates its correctness. This score was computed by
Barinel as described earlier in the paper, where the data-
agnostic diagnoser uses uniform priors and the proposed
data-augmented diagnoser uses the predicted fault probabil-
ities from the learned model.

Each of the software projects we used includes a test
package that contains automated tests that can be run au-
tomatically. For every experiment, we chose a package and
a known bug that occurred in this package. Then, we choose
a subset of the automated tests that test this package and ran
them to record their trace. Test outcome was simulated by
assuming that a bug that is in a trace has a probability of
0.2 to fail. This is added because a nature behavior of a soft-
ware faulty component is that it does not always cause tests
passing through it to fail.

To compare the set of diagnoses returned by the different
diagnosers, we computed the weighted average of their pre-
cision and recall as follows. First, the precision and recall
of every returned diagnosis was computed. Then, we aver-
aged the precision and recall of all the returned diagnoses,
weighted by the score given to the diagnoses by Barinel, nor-
malized to one. This enables aggregating the precision and
recall of a set of diagnoses while incorporating which diag-
noses are regarded as more likely according to Barinel. For
brevity, we will refer to this weighted average precision and
weighted average recall as simply precision and recall.

The rows “Agn.” and “Aug.” in Table 3 show the av-
erage precision and recall for the data-agnostic and data-
augmented diagnosers, respectively. The rows “Syn(0.1)”
and “Syn(0.0)” will explained be later. A problem instance
consists of (1) a bug, and (2) a set of observed tests, chosen
randomly, while ensuring that at least one test would pass
through the faulty files. We experimented with 10, 20, 30,
and 40 observed tests (along with their traces and outcomes),
corresponding to the columns of Table 3. Each result in the
table is an average over the precision and recall obtained for
50 problem instances.

Both precision and recall of the data-augmented and data-
agnostic diagnosers support the main hypothesis of this
work: a data-augmented diagnoser can yield substantially

4007

POI Precision Recall

Tests 10 20 30 40 10 20 30 40
Agn. 056 0.60 0.61 0.61 0.51 054 054 055
Aug. 066 076 064 0.64 | 0.61 0.68 056 056
Syn.(0.1) 0.70 0.81 077 077 | 062 0.70 0.65 0.65
Syn.(0.0) 079 098 088 088 | 066 083 073 0.73
CDT Precision Recall

Tests 10 20 30 40 10 20 30 40
Agn. 060 049 046 045 | 052 041 038 0.38
Aug 064 059 055 056 | 054 046 041 0.42
Syn.(0.1) 0.89 0.81 069 069 | 0.89 085 0.68 0.68
Syn.(0.0) 099 098 083 083 | 080 0.70 059 0.58
ANT Precision Recall

Tests 10 20 30 40 10 20 30 40
Agn. 058 068 068 068 | 048 049 049 049
Aug. 066 073 073 073 | 056 053 053 053
Syn.(0.1) 079 086 086 0.86 | 069 0.66 0.66 0.66
Syn.(0.0) 097 099 099 099 | 0.87 079 079 0.79

Table 3: Avg. recall and precision for diagnostic task.

better diagnoses that a data-agnostic diagnoser. For exam-
ple, the precision of the data-augmented diagnoser for the
POI project with 20 tests is 0.76 while it is only 0.60 for the
data-augnostic diagnoser. No clear trend is observed from
adding additional tests.

Synthetic Priors Building better fault prediction models
for software is an active field of study (Radjenovic et al.
2013) and thus future fault prediction models may be more
accurate than the ones used by our data-augmented diag-
noser. To evaluate the potential benefit of a more accurate
fault prediction model on our data-augmented diagnoser, we
created a synthetic fault prediction model, in which faulty
source files get Py probability and healthy source files get
Py, where Py and P, are parameters. Setting P, = Py
would cause the data-augmented diagnoser to behave in
a uniform distribution exactly like the data-agnostic diag-
noser, setting the same prior probability for all source files
to be faulty. By contrast, setting P, = 0 and Py = 1 repre-
sent an optimal fault prediction model, that exactly predicts
which files are faulty and which are healthy.

The lines marked “Syn. (X)” in Table 3 mark the per-
formance of the data-augmented diagnoser when using this
synthetic fault prediction model, where X = P, and Py =
0.6. Note that we experimented with many values of P; and
Py, and presented above a representative subset of these re-
sults.

As expected, setting lowering the value of P, results in
more better diagnoses being found. Setting a very low Pj
value improves the precision significantly up to almost per-
fect precision in some cases (0.99 for ANT when given
20 observed tests). Thus clearly demonstrating the potential
benefit of the proposed data-augmented approach.

Troubleshooting Task

Efficient diagnosers are key components of troubleshoot-
ing algorithms. Troubleshooting algorithms choose which
tests to perform to find the most accurate diagnosis. Zamir
et al. (2014) proposed several troubleshootings algorithms
specifically designed to work with Barinel for troubleshoot-
ing software bugs. In the below preliminary study, we eval-
uated the impact of our data-augmented diagnoser on the
overall performance of troubleshooting algorithms. Specifi-
cally, we implemented the so-called highest probability (HP)
troubleshooting algorithm, in which tests are chosen in the
following manner. HP chooses a test that is expected to pass
through the source file having the highest probability of be-
ing faulty, given the diagnoses probabilities.

We run the HP troubleshooting algorithm with each of
the diagnosers mentioned above (all rows in Table 3). We
compared the HP troubleshooting algorithm using different
diagnosers by counting the number of tests required to reach
a diagnosis of score higher than 0.7. Note that the aim of
a troubleshooting algorithm is to minimize the number of
required tests. Our hypothesis is that a data-augmented di-
agnoser will reduce the number of tests since the learned
prior probabilities of the software components might direct
the HP troubleshooting algorithm to select tests which pass
through components with higher probability.

POI1 Steps Precision

Tests 10 20 30 40 10 20 30 40
Agn. 50 9.6 174 204 | 052 053 055 052
Aug. 44 74 9.8 174 | 0.63 0.69 0.68 0.5
Syn.(0.1) 28 4.0 100 8.6 062 071 0.69 0.72
Syn.(0.0) 02 0.0 0.0 1.0 0.74 091 0.88 0.85
CDT Steps Precision

Tests 10 20 30 40 10 20 30 40
Agn. 7.0 16.0 270 31.0 | 057 044 042 042
Aug. 52 84 15.8 13.0 | 066 058 052 053
Syn.(0.1) 2.0 74 144 186 | 0.74 0.73 072 0.76
Syn.(0.0) 0.0 0.0 0.4 0.0 092 088 0.84 0.87
ANT Steps Precision

Tests 10 20 30 40 10 20 30 40
Agn. 54 78 8.6 8.0 0.53 0.58 0.57 0.60
Aug. 40 6.6 6.0 6.8 057 067 064 0.67
Syn.(0.1) 36 5.0 5.6 4.6 0.70 0.71 0.71 0.75
Syn.(0.0) 0.0 0.0 0.0 0.0 089 092 092 092
Table 4: Avg. steps and precision for troubleshooting.

Table 4 is structured in a similar way to Table 3 ex-
cept that it shows the average number of tests performed
by the HP troubleshooting algorithm until it halts (in the
“Steps” columns) and the precision of the found diagno-
sis (in the “Precision” columns). The results show the same
over-arching theme: the data-augmented diagnoser is much
better than the data-agnostic diagnoser for this troubleshoot-
ing task, being able to halt earlier with a higher quality di-
agnosis. Also, using the synthetic fault prediction model can
result in even further improvement, thus suggesting future
work for improving the learned fault prediction model.

4008

Conclusion, and Future Work

We incorporated a software fault prediction model into the
software diagnosis algorithm Barinel (Abreu, Zoeteweij, and
van Gemund 2009). The resulting data-augmented diagnoser
is shown to outperform Barinel without such a fault pre-
diction model. This was verified experimentally using three
open source projects. Results also suggests that future work
on improving the learned fault prediction model will result
in an improved diagnosis accuracy. In addition, it is worth-
while to incorporate the proposed data-augmented diagno-
sis methods with other proposed improvements of the based
SFL-based software diagnosis, as those proposed by Hofer
et al. (2012; 2012).

References

Abreu, R., and van Gemund, A. J. 2009. A low-cost approximate
minimal hitting set algorithm and its application to model-based
diagnosis. In SARA, volume 9, 2-9.

Abreu, R.; Hofer, B.; Perez, A.; and Wotawa, F. 2015. Using con-
straints to diagnose faulty spreadsheets. Software Quality Journal
23(2):297-322.

Abreu, R.; Zoeteweij, P.; and van Gemund, A. J. C. 2009.
Spectrum-based multiple fault localization. In Automated Software
Engineering (ASE), 88-99. IEEE.

Abreu, R.; Zoeteweij, P.; and van Gemund, A. J. C. 2011. Si-
multaneous debugging of software faults. Journal of Systems and
Software 84(4):573-586.

Campos, J.; Abreu, R.; Fraser, G.; and d’Amorim, M. 2013.
Entropy-based test generation for improved fault localization. In
Denney, E.; Bultan, T.; and Zeller, A., eds., 2013 28th IEEE/ACM
International Conference on Automated Software Engineering,
ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013, 257-
267. IEEE.

de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple faults.
Artif. Intell. 32(1):97-130.

Feldman, A.; de Castro, H. V.; van Gemund, A.; and Provan, G.
2013. Model-based diagnostic decision-support system for satel-
lites. In IEEE Aerospace Conference, 1-14. IEEE.

Halstead, M. H. 1977. Elements of Software Science (Operating
and Programming Systems Series). New York, NY, USA: Elsevier
Science Inc.

Hofer, B., and Wotawa, F. 2012. Spectrum enhanced dynamic
slicing for better fault localization. In ECAI, 420-425.

Hofer, B., and Wotawa, F. 2014. On the usage of dependency-based
models for spreadsheet debugging. Software Engineering Methods
in Spreadsheets.

Hofer, B.; Riboira, A.; Wotawa, F.; Abreu, R.; and Getzner, E.
2013. On the empirical evaluation of fault localization techniques
for spreadsheets. In Cortellessa, V., and VarrA§, D., eds., Fun-
damental Approaches to Software Engineering, volume 7793 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg.
68-82.

Hofer, B.; Wotawa, F.; and Abreu, R. 2012. Al for the win: improv-
ing spectrum-based fault localization. ACM SIGSOFT Software
Engineering Notes 37(6):1-8.

Jannach, D., and Schmitz, T. 2014. Model-based diagnosis of
spreadsheet programs: a constraint-based debugging approach. Au-
tomated Software Engineering 1:1-40.

Jannach, D.; Schmitz, T.; Hofer, B.; and Wotawa, F. 2014. Avoid-
ing, finding and fixing spreadsheet errors - A survey of automated
approaches for spreadsheet QA. Journal of Systems and Software
94:129-150.

McCabe, T. J. 1976. A complexity measure. I[EEE Trans. Software
Eng. 2(4):308-320.

Mitchell, T. 1997. Machine learning. McGraw Hill.

Perez, A.; Abreu, R.; and Riboira, A. 2014. A dynamic code cov-
erage approach to maximize fault localization efficiency. Journal
of Systems and Software.

Radjenovic, D.; Hericko, M.; Torkar, R.; and Zivkovic, A. 2013.
Software fault prediction metrics: A systematic literature review.
Information & Software Technology 55(8):1397-1418.

Reiter, R. 1987. A theory of diagnosis from first principles. Artif.
Intell. 32(1):57-95.

Sliwerski, J.; Zimmermann, T.; and Zeller, A. 2005. When do
changes induce fixes? ACM sigsoft software engineering notes
30(4):1-5.

Stern, R.; Kalech, M.; Feldman, A.; and Provan, G. M. 2012. Ex-
ploring the duality in conflict-directed model-based diagnosis. In
AAAL

Struss, P., and Price, C. 2003. Model-based systems in the auto-
motive industry. Al magazine 24(4):17-34.

Weiser, M. 1982. Programmers use slices when debugging. Com-
mun. ACM 25(7):446-452.

Williams, B. C., and Nayak, P. P. 1996. A model-based approach
to reactive self-configuring systems. In Conference on Artificial
Intelligence (AAAI), 971-978.

Williams, B. C., and Ragno, R. J. 2007. Conflict-directed A* and
its role in model-based embedded systems. Discrete Appl. Math.
155(12):1562-1595.

Wotawa, F., and Nica, M. 2011. Program debugging using con-
straints — is it feasible? Quality Software, International Conference
on 0:236-243.

Wotawa, F. 2010. Fault localization based on dynamic slicing and
hitting-set computation. In Quality Software (QSIC), 2010 10th
International Conference on, 161-170. IEEE.

Zamir, T.; Stern, R.; and Kalech, M. 2014. Using model-based
diagnosis to improve software testing. In AAAI Conference on Ar-
tificial Intelligence.

4009

