
Ontology Re-Engineering:
A Case Study from the Automotive Industry

Nestor Rychtyckyj and Venkatesh Raman
Ford Motor Company
Dearborn, MI, USA

Baskaran Sankaranarayanan,
P Sreenivasa Kumar, Deepak Khemani

Indian Institute of Technology Madras
Chennai, TN, India

Abstract

For over twenty five years Ford has been utilizing
an AI-based system to manage process planning for
vehicle assembly at our assembly plants around the
world. The scope of the AI system, known originally
as the Direct Labor Management System and now as
the Global Study Process Allocation System (GSPAS),
has increased over the years to include additional func-
tionality on Ergonomics and Powertrain Assembly (En-
gines and Transmission plants). The knowledge about
Ford’s manufacturing processes is contained in an on-
tology originally developed using the KL-ONE repre-
sentation language and methodology. To preserve the
viability of the GSPAS ontology and to make it easily
usable for other applications within Ford, we needed to
re-engineer and convert the KL-ONE ontology into a se-
mantic web OWL/RDF format. In this paper, we will
discuss the process by which we re-engineered the ex-
isting GSPAS KL-ONE ontology and deployed Semantic
Web technology in our application.

1 Introduction

The Direct Labor Management System (DLMS) (Rychtyckyj
1999) was initially developed and deployed in Ford’s North
American assembly plants back in the early 1990s. It was
recognized that an ontology and a reasoner were required
to represent the complex knowledge in the manufacturing
process. This was done by creating an implementation of
the KL-ONE language using the LISP programming language
and developing a classifier that could reason with the ontol-
ogy. This implementation turned out to be extremely suc-
cessful and became the production version as the system
was expanded to assembly plants first in Europe and then
the rest of the world. Throughout this the KL-ONE archi-
tecture remained in place as the ontology was expanded and
maintained through thousands of updates.

As the Semantic Web architecture and standards were
developed it became obvious the GSPAS KL-ONE ontology
would be much more usable and of better value to Ford if
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it could be rewritten into OWL/RDF. A semantic web on-
tology would be much easier to maintain and could be ex-
tended and utilized for other applications in the company.
The main issue was in terms of time and resources: GSPAS
was a production system with high value to the business cus-
tomers and it was impossible to spare the people to redo the
ontology and keep the existing system in production. An
alternative solution was needed and we found it by partner-
ing with the Indian Institute of Technology Madras (IITM)
in Chennai, India. We elected to partner with IITM for sev-
eral reasons. The university has an excellent reputation with
a strong background in Artificial Intelligence. In addition,
Ford already has significant operations in Chennai and we
wanted to develop a strong relationship with the university.

The result of this project was very successful. The IITM
team delivered a re-engineered OWL/RDF ontology that con-
tained the knowledge in the existing KL-ONE ontology. The
Ford team validated and updated the ontology to meet Ford’s
requirements and has deployed the lexical ontology into the
GSPAS application. The rest of the paper is organized as fol-
lows: Section-2 will describe the structure and usage of the
existing KL-ONE ontology. Section-3 describes the conver-
sion approach and the conversion process, while Section-4
describes how the ontology was validated and then deployed
into the GSPAS application. In this paper, we will refer to the
GSPAS KL-ONE ontology as the GSPAS ontology or KL-ONE
ontology, and refer to the new GSPAS OWL ontology as the
new ontology or OWL ontology.

2 The existing KL-ONE ontology

We adapted the KL-ONE knowledge representation system
during our initial development of DLMS. There were no KL-
ONE tools or editors available so we built both a KL-ONE
editor as well as the code for classification and reasoning
(Rychtyckyj 1994). The Knowledge Base Update (KBU)
module was a graphical user interface that allowed us to
maintain the KL-ONE knowledge base and also performed
error checking as part of the update process.

The KL-ONE knowledge representation system (Brach-
man and Schmolze 1985) was first developed in the late
1970’s. KL-ONE was selected for use on the DLMS project
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because of its adaptability as well as the power of the KL-
ONE classification algorithm.

The KL-ONE knowledge base as used in DLMS can be de-
scribed as a network of concepts with the general concepts
being closer to the root of the tree and the more specific con-
cepts being the leaves of the tree. A concept in a KL-ONE
knowledge base inherits attributes from the nodes that sub-
sume it. The power of the KL-ONE system lies in the clas-
sification scheme. The system will place a new concept into
its appropriate place in the taxonomy by utilizing the sub-
sumption relation on the concept’s attributes. A detailed de-
scription of the KL-ONE classification scheme can be found
in (Schmolze and Lipkis 1983).

The existing KL-ONE ontology proved to be very robust
and flexible as we made hundreds of changes to it on an an-
nual basis. Both the business and the technology changed
dramatically, but we managed to keep the system fully func-
tional as its scope increased dramatically. However, it also
became obvious that the KL-ONE framework was limiting
the usefulness of the GSPAS ontology. It was difficult to ex-
tract and share knowledge with other applications because
custom code was needed. The graphical user interface was
rewritten several times as the application was migrated to
new platforms and maintaining it was time-consuming. In
the meantime semantic web technology had matured to a
point where it was certainly feasible to move into this space.

3 Re-Engineering KL-ONE into OWL
The goal of this project is not only ontology translation but
also redesign and restructuring, where the scope is limited
to GSPAS and OWL frameworks. The GSPAS to OWL transla-
tion follows the 4-layered approach (with lexical, syntactic,
semantic and pragmatic layers) from (Corcho and Gómez-
Pérez 2005; Euzenat 2001). The lexical and syntactic layers,
respectively, deal with character-set and KR-language syntax
translation. The semantic and pragmatic layers, respectively,
deal with interpretation and choice-of-modeling.

Our approach to re-engineering (redesign and translation)
is shown in Fig-1. We follow a spiral development model
and make several iterations through the various phases. The
Framework-Mapping phase covers the semantic and prag-
matic aspects of ontology translation. The lexical and syn-
tactic transformations are implemented in the translator, we
do not present the details due to space limit. The remainder
of this section describes our re-engineering approach.

3.1 Study Phase

Here, the goal is to understand the GSPAS and OWL (Bech-
hofer et al. 2004) frameworks, their similarities and differ-
ences, and understand the use-cases, design and organization
of the GSPAS ontology, and identify areas for improvement.

To accomplish this goal, the IITM team studied the GSPAS,
KL-ONE, DL and OWL frameworks, and with the help of
the Ford team analyzed the GSPAS ontology. Then the IITM
team developed a document that presented their understand-
ing of (i.) the KR frameworks, (ii.) a potential mapping be-
tween GSPAS and OWL, (iii.) the design, organization and
use-cases of GSPAS ontology, and (iv.) a high-level approach
to GSPAS ontology re-engineering.

GSPAS
KL-ONE

GSPAS
Design

GSPAS
Ontology

Test Cases

Framework
Mapping

(2)

Ontology
Design

(3)

Ontology
Conversion

(4)

Study
(1)

Validation

(5)

OWL-DL

New
Design

GSPAS OWL
Ontology

CURRENT STATE END STATE

Figure 1: GSPAS to OWL conversion. Shows the current
and end states of the ontology, the life-cycle of ontology re-
engineering, the inputs to re-engineering (solid line), and the
various phases and deliverables (dashed line).

The Ford team then reviewed the understanding-
document and worked with the IITM team to validate their
understanding of the ontology and to address the questions
and fill in the blanks where needed. There was a significant
amount of “obsolete” knowledge that was no longer needed
but existed in the ontology, furthermore, ontology “cleanup”
was never a high priority due to limited time and resources,
so concepts like carburetors or tape decks still exist in the
ontology.

3.2 Framework Mapping

Here we aim to establish a correspondence between GSPAS
(a subset of KL-ONE) and OWL frameworks. So we study
and compare the three elements of the frameworks, namely,
vocabulary, representation and reasoning.

Vocabulary: GSPAS, KL-ONE, DL and OWL (though re-
lated) use different names to refer to a given idea or con-
ceptualization. We document the various vocabularies and
their correspondences, see Table-1. It also shows the GSPAS
features that are (un)supported in other frameworks.

Representation: we study the KR primitives in GSPAS
and determine how GSPAS ontology can be losslessly en-
coded in OWL. GSPAS implements only a subset of the KL-
ONE framework. For each GSPAS KR primitive we find a
representation in OWL, such that the subsumption relation
is preserved after translation. Table-2 shows the KR prim-
itives and their OWL translation. Here, a primitive concept
is represented as a subclass axiom, a defined concept as an
equivalence axiom, a classifiable attribute as an object prop-
erty, a simple attribute as an annotation property, and a value
restriction as an existential restriction.
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Table 1: Vocabulary Mapping. Only terms relevant to GSPAS framework are listed here.

GSPAS KL-ONE DL OWL

1 Concept Concept Concept Class
2 Primitive Concept Primitive Concept Atomic Inclusion Partial Concept
3 Generic Concept Defined Concept Definition Complete Concept
4 Individual Individual Concept Individual Object
5 Classifiable Attribute Role Role Object Property
6 Attribute Non-definitional Role n/a Annotation Property
7 Inheritable Attribute n/a n/a n/a
8 Role Restriction Role Restriction Role Restriction Property Restriction
9 Value Restriction Value Restriction Value Restriction Value Restriction

10 Number Restriction Number Restriction Number Restriction Cardinality restriction
11 Classifier Classifier Reasoner Reasoner

Table 2: GSPAS KR primitives and their OWL translation.
Where, A is concept name; C,C1,C2 are concept expressions; R, S are role names.

GSPAS KL-ONE DL OWL

1 Primitive Concept Primitive Concept A � C rdfs:subClassOf
2 Generic Concept Defined Concept A ≡ C owl:equivalentClass
3 Classifiable Attribute Role Role owl:ObjectProperty
4 Attribute Non-definitional Role n/a owl:AnnotationProperty
5 Inheritable Attribute n/a n/a n/a
6 Value Restriction Value Restriction ∃R.A owl:someValuesFrom
7 Conjunction Conjunction C1 � C2 owl:intersectionOf
8 Sub Role Sub Role R � S rdfs:subPropertyOf

In GSPAS ontology, roles are functional and value restric-
tions can be seen as ∀R.A � ∃R. In the new ontology, we
remodel the value restriction as existential restriction ∃R.A
(note that ∀R.A � ∃R � ∃R.A). This helps to preserve the
subsumption relation and also makes the new ontology more
tractable from a computational complexity point of view.

In Table-2, inheritable attributes are non-definitional but
are inherited by subclasses, this is a GSPAS specific feature,
neither KL-ONE nor OWL support this type of attribute di-
rectly. In the new ontology, for pragmatic reasons, we model
inheritable attributes as annotation properties (without inher-
itance) and allow the application that uses the ontology to
handle attribute inheritance.

Reasoning: we show how subsumptions in the GSPAS on-
tology are preserved in the new ontology. The GSPAS clas-
sifier (a derivative of the KL-ONE classifier) uses structure-
matching to compute subsumption relation, whereas, OWL
reasoners use logic-based tableau algorithms for this pur-
pose. It is known that structural subsumption is sound but
incomplete with respect to logical subsumption (Baader et
al. 2003), i.e., for a knowledge base, logical subsumption
will find all inferences that structural subsumption can find
and possibly more; let us denote this as property P1.

Now, the profile of GSPAS (a subset of KL-ONE) is:

A � C; A ≡ C; axioms (1a)
C → A | ∀R.A � ∃R | C1 � C2; constructors (1b)

The profile of the new (translated) ontology is:

A � C; A ≡ C; R � S; axioms (2a)
domain(R) � C; range(R) � C; axioms (2b)
C → A | ∃R.A | C1 � C2; constructors (2c)

where, A is concept name; C,C1, C2 are concept expres-
sions; R,S are role names.

Observe that models of Eqn-1, when value restriction is
translated into existential restriction, are models of Eqn-2.
From property P1 and (∀R.A � ∃R � ∃R.A), we can con-
clude that the subsumptions in GSPAS ontology will be pre-
served in the new ontology. Furthermore, Eqn-2 forms a
sub-language of DL called EL++ (Baader, Brandt, and Lutz
2008; Motik et al. 2012) which runs in polynomial time for
common reasoning tasks. Thereby, the new ontology stays
well within the OWL-DL subset.

We experimented with other DL profiles and selected
EL++ because it provides a good balance between expres-
siveness and performance for the current ontology require-
ments.

3.3 Ontology Design and Organization

The existing GSPAS ontology was designed to support two
use cases, namely, to parse vehicle-build-instructions writ-
ten in standard language (Rychtyckyj 2006), and to interpret
(assign meaning to) parsed instructions. As a result of this,
there are two sets of terminology in the ontology—one that
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describes words in the standard language and the other that
describes build-instructions, parts, tools, etc.

The new design aims to organize the ontology in a mod-
ular fashion, i.e., keep related terms together and unrelated
terms apart. Accordingly, the new ontology is broadly di-
vided into language and manufacturing terms (Fig-2). Each
of this is further divided into smaller areas (like verbs, parts,
tools, etc.), and so on to arbitrary depth.

GSPAS
Ontology

PartsOperations Tools . . .

Lexical
Terms

language
operations

parts
tools
· · ·

hammer

lex:hammer

opr:hammer tool:hammer

M
anufacturing
O

ntology
L

anguage
O

ntology

Figure 2: Re-engineered Ontology.

Fig-2 highlights the differences between the GSPAS ontol-
ogy and the new ontology. The new ontology is a collection
of terms.1 Every term, apart from its description, is assigned
a namespace, a label and a unique identifier. The unique
identifier is generated from namespace and label.2 Names-
paces have a hierarchical structure, this structure allows top-
down organization of the ontology to arbitrary depth.

Most of the design of GSPAS ontology is stable and
reusable. So we reuse the working-parts of GSPAS design
and remodel only the problematic cases. Accordingly, in
the new design we remodel, among other things, homonyms
(one-spelling many-meanings), synonyms (many-spellings
one-meaning) and part-of-speech information.

Homonyms: By design, terms in the GSPAS ontology re-
side in a single namespace and a term is identified by its
name (label). As a result, a term like hammer which occurs
as a word in the standard language, as a tool and an operation
will carry all three details in its description. So hammer will
have a single representation overloaded with three different
meanings (resulting in the homonym problem). Such terms
will specialize unrelated parents and will be specialized by
unrelated children. This causes interleaving of unrelated hi-
erarchies, and leads to spurious (or unintended) inferences.
For example, from “hammer is a tool” and “hammer is an
operation” and “power-hammer is a hammer,” we can infer
that “power-hammer is an operation”, a spurious inference.

Homonyms can lead to description errors. For example, if
hammer as a word is a primitive-concept and as an operation
it is a defined-concept then only one of these types can be
used. Using one will cause description error for the other.

Homonyms also cause punning. OWL-DL requires the
identifiers of objects, classes and properties to be mutually

1Term refers to any of Concept, Individual, Role or Attribute.
2International Resource Identifier (IRI) is the unique identifier.

disjoint. Punning is the result of violating this constraint.
For example, prepositions like using and with occur as con-
cepts in the language ontology and as properties in the man-
ufacturing ontology.

The new design adopts “one-term one-meaning” princi-
ple, where a term is allowed only one meaning (or sense).
Therefore, each sense of a homonym will be defined in a
separate namespace. Now, hammer will be split into 3 new
terms, each with a single meaning and a distinct namespace.

lex:hammer opr:hammer tool:hammer

This solves the homonym problem and enforces “one-term
one-meaning” principle. Now, homonyms will have match-
ing labels, but different IRIs, and will not cause spurious
inferences.

Synonyms: In the GSPAS ontology, name variations (like
synonyms, acronyms, abbreviations, misspellings, regional
variations, names given by external source, etc.) are treated
as synonyms (we call them GSPAS-synonyms). GSPAS syn-
onyms are stored as data-values in the associated term and
so the classifier does not process then. The same approach is
used in the new design where GSPAS synonyms are stored in
a multi-valued OWL annotation property. Below, we provide
an alternate design and give reasons for rejecting it.

GSPAS synonyms for classes and objects can be modeled
using predefined properties owl:equivalentClass
and owl:sameAs, respectively. Now, GSPAS synonyms
become logical-terms and the classifier will process them.
But this has a few side effects. First, we cannot tell apart a
term and its synonym because both become first class terms,
so the synonym relation has no explicit representation. This
is not wrong, but the synonym relationship goes out of sight.
Second, the GSPAS synonym relation is neither symmetric
nor transitive, but class-equivalence and same-as are both
symmetric and transitive, and so will induce spurious syn-
onym relationships. Third, the GSPAS synonyms become
new terms in the namespace and may cause homonym prob-
lem. This can be solved, but at the expense of introducing
spurious homonyms. For these reasons we reject this ap-
proach and treat synonyms as data-values.

Part-of-speech information: In GSPAS ontology, part-
of-speech (POS) information is modeled in two ways: POS
tags (like noun, verb, etc.) appear as concepts in the taxon-
omy (so words in standard language can specialize them),
and POS tags are stored as data-values in non-definitional at-
tributes. In the new design, we model POS tags as concepts
in the taxonomy. The POS tags stored in the attributes are
remodeled into the taxonomy by creating suitable POS con-
cepts and subsumption links.

3.4 Ontology Conversion

Conceptually, ontology conversion takes a GSPAS term and
creates one or more new terms from it, and in the process
it resolves homonyms and implements the various design
choices. For example, a GSPAS term description like

C ≡ A � B � ∀R.U � ∃R � ∀S.V � ∃S (3)
may result in new term descriptions like

C1 ≡ A1 � ∃R1.U1; C2 ≡ B2 � ∃S2.V2 (4)
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where, alphabets are term names, subscripts are namespaces,
each new term gets one namespace, the left-side of a term
description is a name, and the right-side is an expression
that refers to terms defined elsewhere in the ontology.

Technically, ontology conversion reduces to the problem
of assigning namespace(s) to each name in a term descrip-
tion and then extracting new descriptions from that term de-
scription. For example, term C after namespace assignment
is shown below, from this, new descriptions C1,C2 (in Eqn-
4) are extracted after resolving namespace ambiguities.

C1,2 ≡ A1,2 � B2,3 � ∀R1.U1,3 � ∃R1 � ∀S2.V2,3 � ∃S2
In the presence of namespace ambiguity, ontology conver-
sion becomes an inverse problem.3 There are several solu-
tions to C1 and C2, one solution is Eqn-4, another solution
is given below, and many other solutions exist.

C1 ≡ A2 � ∃R1.U3; C2 ≡ B3 � ∃S2.V3

We need a set of rules to select the correct solution from the
possible set of solutions. The choice of solution depends on
the choice of namespaces, the particular instance of GSPAS
ontology, and homonyms in the ontology.

Below, we describe the conversion process with the help
of Fig-3, two term-mapping functions and three choice-
functions. In Fig-3, parent refers to named primitive con-
cept, role refers to the role participating in role restrictions,
and filler refers to value restriction. For example, in Eqn-3,
parents of C is {A,B}, roles of C is {R, S}, and fillers of R
in C is {U}.

The term-mapping functions are used to track the rela-
tionship between GSPAS terms (sources) and new terms (tar-
gets). Here, sof maps a target to its source, each target has
only one source, and tof (inverse of sof) maps a source to a
set of targets. For example,

sof(C1) = C; sof(C2) = C; tof(C) = {C1,C2}.
The choice functions are used to disambiguate homonyms

and to choose admissible terms. Given a context and set of
candidate new-terms, choice functions return a set of new-
terms valid in that context. Here, chooseP returns the valid
parents for a given concept; chooseR returns the valid roles
for a given concept; chooseF returns the valid fillers for a
given concept and role pair. For example,

chooseP(C1, {A1,A2}) = {A1}
chooseR(C1, {R1, S2}) = {R1}

chooseF(C1,R1, {U1,U3}) = {U1}
Ontology conversion creates new terms from GSPAS

terms, this is done in 4 steps: (A.) create new terms, with
empty descriptions, from GSPAS terms; (B.) add parents to
the newly created terms, (C.) then roles, (D.) and role fillers
(value restrictions). These steps are elaborated below.

3The corresponding forward problem is to recover the GSPAS
ontology from the new ontology, i.e., drop namespaces and merge
descriptions. GSPAS conversion is lossless if we can recover GSPAS
ontology from the new ontology.

parent

concept

role

filler

candidates

candidate

candidates

n-parent

n-concept

n-role

n-filler

(A)

GSPAS TERM NEW TERM

1

sof(n-concept)

2

3

tof(parent)

4

chooseP

5

6

tof(role)

7

chooseR

8

9

tof(filler)

10

chooseF

(B) compute parents
1-2-3-4

(C) compute roles
1-5-6-7

(D) compute fillers
8-9-10

Figure 3: Conversion work flow. Shows GSPAS term and a
new term, and the conversion steps A to D. Numbers indi-
cate flow sequence. Double arrow indicates set-valued in-
put/output, otherwise it is scalar input/output. Items to be
computed are in dashed-lines.

(A.) Create new-terms (concepts, roles and attributes). First,
determine the choice of namespaces for the new ontology,
then, for each namespace, identify the terms that belong to
it. Homonyms will show up in multiple namespaces. Next,
create new-terms out of GSPAS-terms and namespaces, and
track the association using sof and tof functions.

1 for each ns in Namespaces
2 ns-terms = identify all terms that belong to ns
3 for each term in ns-terms
4 new -term = Create-Term(ns, term)
5 add term to sof(new -term)
6 add new -term to tof(term)

At this point we have new-terms with empty descriptions,
each new-term will map to exactly one GSPAS-term, and
each GSPAS-term will map to one or more new-terms.
(B.) Populate parents (follow the path 1-2-3-4 in Fig-3). For
each new-concept fetch its GSPAS-parents. For each GSPAS-
parent fetch the candidate set. If a parent is a homonym it
will return multiple candidates. Now, use the choice func-
tion to select valid parents from the candidate set. Add se-
lected parents to the new-concept.

7 for each new -concept
8 concept = sof(new -concept)
9 for each parent of concept

10 candidates = tof(parent)
11 new -parents = chooseP(candidates)
12 add new -parents to new -concept

(C.) Populate roles (follow the path 1-5-6-7 in Fig-3). For
each new-concept fetch its GSPAS-roles. For each GSPAS-
role fetch the candidate set. Each role has only one meaning
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in GSPAS ontology, so GSPAS-role and candidate-role will be
in 1-to-1 correspondence. So candidate set will be a single-
ton set. Use the choice function to select valid role from the
candidate set. Add selected role to new-concept.

13 for each new -concept
14 concept = sof(new -concept)
15 for each role of concept
16 candidates = tof(role)
17 new -role = chooseR(candidates)
18 add new -role to new -concept
19 // code to populate fillers is given below

Now, populate attributes in a similar manner.
(D.) Populate role fillers (continue from previous step and
follow the path 8-9-10 in Fig-3). For a GSPAS-role fetch its
fillers. For each GSPAS-filler fetch the candidate set. Use the
choice function to select the valid filler from the candidate
set. Add selected fillers to new-concept.

19 // code to populate fillers is given below
20 for each filler of role
21 candidates = tof(filler)
22 new -fillers = chooseF(candidates)
23 add new -fillers to new -role

of new -concept

Now, populate attribute fillers in a similar manner.

At the end of step D, all term descriptions are complete
and we have a re-engineered namespace-aware ontology
which can be serialized in OWL/RDF format.

In the conversion process, the choice function is the
workhorse, and the remaining is routine processing. The
choice function uses a set of cascading rules to disambiguate
terms. For example, given a term and a set of candidate par-
ents, chooseP returns parents from the term’s namespace,
otherwise returns parents that prefer children from the term’s
namespace, otherwise returns the candidate set.

For each role, its namespace and the namespaces in which
it can be used is predetermined during design phase. Also,
its domain and range are predetermined. Given a term and a
candidate role, chooseR returns the role if it is usable in the
term’s namespace otherwise none.

Given a term, a role and a set of candidate fillers, chooseF
filters the candidate list progressively until only one candi-
date is left. First, it selects fillers that are subtype of the
role’s range, next selects fillers from the term’s namespace,
and finally selects fillers from the role range’s namespace.

The choice functions and their rules were discovered
by profiling the GSPAS ontology and by experimentation.
The rules are specific to GSPAS ontology, its design-and-
organization, the choice of namespaces, homonyms, etc.
The rules are tuned to the particular ontology instance that
was used for conversion and testing.

3.5 Verification

Verification is done at 3 levels: framework level, ontology
level and application level.

At the framework level, (i.) we verify the validity of the
mapping between KR primitives (Table-2). It is verified by

comparing the asserted hierarchies of the new and GSPAS
ontology, and then comparing the respective inferred hier-
archies. The asserted hierarchy in the new ontology had
4 missing subsumption links out of 12,600+ direct links.
These were fixed manually. Next, we manually compared
the inferred hierarchies, most of the hierarchy matched,
there were about 20 cases where a sub-concept became
equivalent to its parent. These types of cases were manu-
ally corrected in the new ontology. (ii.) Further, we verify
the profile of the new ontology. We used Pellet info tool to
compute OWL and DL profiles of the new ontology. It turned
out to be OWL2EL and EL++ (see Table-4) as expected.

At the ontology level, (i.) we verify that every GSPAS
term has a representation in the new ontology and every
new term description is part of some GSPAS term descrip-
tion. This is done by recreating the GSPAS ontology from the
new ontology by dropping the namespaces and merging the
terms. We manually compared the two versions of GSPAS
ontology and found no significant differences. This verifica-
tion by itself does not establish the validity of the new on-
tology, but checks whether the conversion is lossless. It is a
good first line of defense, and helps in accounting for terms
in the new ontology. (ii.) Further, we checked for cases of
punning using Pellet lint tool, and found one violation which
was fixed manually.

The application level verification provides the final vali-
dation of the new ontology. It is described in sec-4.

3.6 Performance Testing

In the GSPAS ontology, all terms are modeled as concepts,
there are no individuals. But primitive concepts that occur
as leafs in the taxonomy and without any role restrictions
qualify as individuals. To explore alternate models of GSPAS
ontology, qualifying individuals in the part-of-speech hierar-
chy and object hierarchy are modeled as individuals.

We created five OWL ontologies from GSPAS ontology
(see Table-3), each differ in the number of individuals they
contain. The first four cases were created for performance
testing. The last one was created as a result of performance
tuning. We tested three reasoners on the five ontologies us-
ing Intel i7-4770 with 16GB RAM running 64bit Ubuntu
12.04; the details are reported in Table-4.

We make the following observations. (i.) Of the reason-
ers, FacT++ has the best overall performance, followed by
HermiT and Pellet. (ii.) Of the ontologies, LEX-1 has the
best overall performance, it has a 1:21 class to individual ra-
tio, and ONT-1 has good overall performance and has no in-
dividuals. (iii.) The performance, though within acceptable
limits, begins to degrade for ONT-2 and ONT-3. HermiT and
Pellet are up to 2 orders of magnitude slower than FacT++
on these ontologies.

To understand where the reasoner was spending time we
profiled ONT-3 using Pellet4 and computed the classifica-
tion time for each concept. From this we prepared a Pareto
Chart (term-count vs classification-time), which showed that

4In Pellet, concept classification is done by a series of subsump-
tion tests. Pellet reports the execution time for each test, we sum
up these times to compute the classification time for a concept.
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Table 3: Ontology test cases. LEX-1 is the language on-
tology with leafs modeled as individuals. ONT-1 is the full
ontology with all terms modeled as concepts.
ONT-2 is ONT-1 with lexical-leaves modeled as individuals.
ONT-3 is ONT-2 with object-leaves modeled as individuals.
ONT-4 is ONT-2 with ordinals rolledback to concepts.

Case Individuals Individuals Classes

LEX-1 lex leafs 6,780 317
ONT-1 none 0 12,815
ONT-2 lex leafs 5,679 7,136
ONT-3 lex and obj leafs 6,898 5,917

ONT-4 lex leafs minus ordinals 5,136 7,679

Table 4: Classification time. Reported by Protégé v4.3.0
using FacT++ v1.6.3, Pellet v2.2.0 and HermiT v1.3.8.
The OWL and DL profiles were derived using Pellet Info tool.
In DL profile, ‘AL’ is Attributive Language, ‘E’ is Existential
Restriction, ‘H’ is Sub-role and ‘O’ is Ordinals.

Language Profile Classification Time (sec)

Case OWL DL FacT++ HermiT Pellet

LEX-1 OWL2EL AL 0.2 0.8 0.7
ONT-1 OWL2EL ALEH 1.6 12 4
ONT-2 OWL2EL ALEHO 2.3 74 564
ONT-3 OWL2EL ALEHO 2.7 352 716

ONT-4 OWL2EL ALEH 1.7 13 4

Pellet was spending 96% of the execution time in clas-
sifying 20% of the terms. We analyzed these terms and
found that most of these had owl:hasValue restriction
in its definition. To verify the impact of owl:hasValue
on performance, we created ONT-4 from ONT-2 by chang-
ing fillers of owl:hasValue into concepts and rewriting
owl:hasValue as existential restriction. Now, ONT-4 out
performs ONT-2 and ONT-3, and has a comparable perfor-
mance to ONT-1.

From this we conclude that creating individuals have less
impact on performance, as seen in LEX-1, but using them in
owl:hasValue restriction degrades performance, as seen
in ONT-2, ONT-3. This is true for HermiT and Pellet. In our
test, FacT++ consistently outperforms HermiT and Pellet,
and for our ontology FacT++ is unaffected by ordinals.

This performance test is solely based on execution time,
we did not compare the inferences made by these reasoners,
so we do not know if there is any qualitative difference in
the inferences produced by these reasoners.

4 Deployment and Maintenance

We (Ford) verified the completeness of the new OWL ontol-
ogy by developing a tool to compare it to the KL-ONE ver-
sion. The delivered OWL ontology needed to be validated
and verified as the first step toward deployment. This pro-
cess consisted of several steps. Initially, the OWL ontology
was loaded into an Allegrograph server and we wrote vari-

ous SPARQL queries to determine if the results returned were
as expected. In cases where the results were not satisfactory,
we then examined the ontology and made modifications if
they were required. This manual validation went on for a
period of several weeks until we were certain that the OWL
ontology was complete and usable.

The next phase of the validation process utilized an auto-
mated set of regression tests that were run against the new
OWL ontology. This is a set of over 1000 use cases that
access the OWL ontology to parse and process the assem-
bly build instructions. In this case, we replaced the KL-ONE
ontology with the OWL ontology and ran the entire suite of
regression tests and compared the results with the baseline.
As with the manual tests we found a number of differences
that needed to be analyzed and addressed. These differences
fell into the following categories:

• OWL representation was different than KL-ONE, but was
part of the re-engineering process. In this case we ad-
justed the regression tests to reflect how the knowledge
was represented in OWL.

• Discrepancies were caused because of formatting, punc-
tuation, special characters and related syntax errors. In
these cases, we wrote a routine that would fix these errors
as part of the OWL retrieval process, but our intention is
to go back and fix these in OWL.

• In some cases, the OWL representation was not what we
wanted. In this case we went back to OWL and made the
appropriate fixes.

At this point we were confident that the lexical ontology was
fairly complete and would be usable after the changes made
above were completed.

The next step was to build an image using the new OWL
ontology and deploy it for user acceptance testing. This
testing pointed out some performance issues that were ad-
dressed by rewriting the code to make the OWL interface
work more efficiently. After these performance issues were
fixed the new AI system with the OWL ontology was de-
ployed into the testing environment. No other major issues
were discovered during the user acceptance testing phase
and the application with the embedded lexical OWL ontol-
ogy was deployed for use.

We were able to take advantage of the extensibility of the
OWL ontology by developing a script that could load a class
of parts known as wire assemblies directly from an external
database. This allows us to add additional knowledge into
OWL much more quickly. Another of the main advantages
of using OWL was the capability to use standard tools for
ontology maintenance. In our case, we are using the Top
Braid Composer tool to maintain our OWL ontology which
provides much additional capability and allowed us to retire
our own tool.

After deployment of the lexical OWL ontology our next
goal is to deploy the manufacturing ontology. The OWL on-
tology is also available for use through Allegrograph and
is being utilized by other applications that need the infor-
mation. Figure-4 shows the structure of our semantic web
architecture.
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Figure 4: Ford Semantic Web Framework.

5 Conclusions and Future Steps

In this paper we described a project where Ford collabo-
rated with the Indian Institute of Technology Madras to re-
engineer and convert an existing ontology into a semantic
web OWL/RDF architecture. After a thorough validation pro-
cedure the lexical ontology has been deployed as part of the
GSPAS system at Ford. The manufacturing ontology will
also undergo the same rigorous validation before deploy-
ment into production.

There were a number of compelling reasons that moti-
vated the re-engineering of the ontology from KL-ONE to
OWL. The most important ones were based around main-
tainability and extensibility. The original software was writ-
ten before any software tools for ontology maintenance were
available. The KL-ONE ontology could only be maintained
using a specialized tool. This tool has had to be re-written
several times as operating systems and hardware were be-
ing upgraded and it was becoming a bottleneck for future
ontology development. The KL-ONE ontology was not us-
able outside the application without designing custom code
to extract specific knowledge. In the meantime business re-
quirements for the ontology were rapidly increasing and the
existing architecture could not support them. The conver-
sion of the ontology to OWL was a critical requirement for
the future usage of the AI application. Our experience was
somewhat unique in that we have been using KL-ONE since
the 1990s and much of the work in semantic web had taken
place after we had a deployed application.

The conversion from KL-ONE to OWL required a signifi-
cant amount of work, but the advantages from moving into
a semantic web architecture made this a worthwhile invest-
ment. It enables us to take advantage of existing tools and
processes and to make our ontology reusable and extensible
using existing standards. Queries can easily be developed
using SPARQL that allow other applications to access our on-
tology. The semantic web infrastructure also gives us the ca-
pability to link to other ontologies and take advantage of the
linked open data world. Therefore, the ROI on this project
is based on the following: increased functionality with OWL
vs. KL-ONE and reduced expenses in terms of maintenance
costs.

Our future work will include the deployment of our man-

ufacturing ontology into production as well as the use of
semantic web tools for ontology development and mainte-
nance. This project has helped us create a center of excel-
lence around semantic technology to support other semantic
web work at Ford.
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