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Abstract
Camera traps (remote, automatic cameras) are revolu-
tionizing large-scale studies in ecology. The Serengeti
Lion Project has used camera traps to produce over 1.5
million pictures of animals in the Serengeti. To analyze
these pictures, the Project created Snapshot Serengeti, a
citizen science website where volunteers can help clas-
sify animals. To increase accuracy, each photo is shown
to multiple users and a critical step is aggregating indi-
vidual classifications. In this paper, we present a new
aggregation algorithm which achieves an accuracy of
98.6%, better than many human experts. Our algorithm
also requires fewer users per photo than existing meth-
ods. The algorithm is intuitive and designed so that non-
experts can understand the end results.

Ecology seeks to understand the interrelationships of species
with one another and with their environment. Monitoring
many species of animals simultaneously has traditionally
been very difficult. Camera traps (remote, automatic cam-
eras) are revolutionizing ecological research by providing a
non-invasive, cost-effective approach for large-scale mon-
itoring. Ecologists are currently using these traps in the
Serengeti National Park, one of the world’s last large in-
tact natural areas, to understand the dynamics of its dozens
of large mammals (Swanson et al. 2014). As of November
2013, the ecologists have spent 3 years using more than 200
cameras spread over 1,125 square kilometers to take more
than 1.5 million photos. In order to process so many images,
the ecologists, along with Zooniverse (a citizen science plat-
form), created Snapshot Serengeti, a web site where over
35,000 volunteers helped classify the species in the pho-
tos (Zooniverse 2014a).

Since volunteers can make mistakes, each photo is shown
to multiple users. A critical step is to combine these classi-
fications into one aggregate classification: e.g., if 4 out of
5 users classify a photo as containing a zebra, we might
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decide that the photo does indeed contain a zebra. In this
paper, we develop an aggregation algorithm for Snapshot
Serengeti. Classification aggregation is an active area in ma-
chine learning; however, we show that much of the exist-
ing literature is based on assumptions which do not apply to
Snapshot Serengeti, and must therefore develop a novel ap-
proach. 1 In addition, current machine learning work on clas-
sification aggregation often draws on ideas such as expecta-

tion maximization and Bayesian reasoning. While powerful,
these methods obscure the connection between input and re-
sults, making it hard for non-machine learning experts to un-
derstand the end results. Thus, our algorithm must be both
accurate and intuitive.

Our paper proceeds as follows. We begin by discussing
Snapshot Serengeti and previous machine learning literature
on classifier aggregation. We then discuss why much of this
existing work is not applicable to Snapshot Serengeti. We
next introduce a new classifier aggregation algorithm for
Snapshot Serengeti and compare it against the current al-
gorithm. Finally, we conclude and discuss possible future
work.

Snapshot Serengeti
The Serengeti Lion Project is studying the population and
community dynamics of wildlife in the Serengeti National
Park, Tanzania (Swanson et al. 2014). To process the 1.5 mil-
lion photos produced so far by their remote camera survey
the project partnered with Zooniverse to create the website
Snapshot Serengeti. Citizen science projects such as Snap-
shot Serengeti use volunteers to help analyze data (Zooni-
verse 2014b). With Snapshot Serengeti, users are presented
with randomly selected photos and choose, from a list of 48
species, which species were in each photo. Users also note
how many animals were present in each photo, whether they
were eating and whether there were any young animals.

1Classification aggregation is often referred to as classification

combination in machine learning and data reduction in citizen sci-
ence projects. All are closely related to boosting but without the
theoretical error bounds.
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Algorithm 1 Current Snapshot Serengeti classification ag-
gregation algorithm

if first 5 classifications are blank then
return blank

else if any 10 classifications are blank then
return blank

else if any 10 users have given classification c then
return c

else if 25 users have classified i then
m := median number of species each user reports
return m most frequent species

end if

An advantage of Snapshot Serengeti is that it was able to
rely on a large pool of volunteers to analyze the data (al-
most 35,000 users have processed at least one image). The
challenge is that volunteers are not experts and may not be
good at identifying different species. For example, a volun-
teer could understandably confuse a Grant’s gazelle with a
Thomson’s gazelle. In addition, for many of the photos, the
animals were mostly off the camera or too close and out of
focus. The solution was to show each photo to multiple peo-
ple and aggregate their results into one overall classifica-

tion. In this paper, we focus on aggregating species classifi-
cations.

The aggregation algorithm currently used by Snapshot
Serengeti, shown in Algorithm 1, was created by Swanson
et. al. specifically for their project. Each photo was shown to
users until one of the conditions in Algorithm 1 was met, at
which point the image was retired. The first two conditions
are designed to find blank photos, i.e. those photos not con-
taining any animals. Blank photos were common because
blowing grass often activated the motion sensitive cameras.
Users were therefore given the option to label photos as
blank. Users could use the blank label on non-blank photos,
however, to indicate they were unsure how to classify that
photo. Thus, the first two conditions aim to find the photos
that are actually blank. The third condition in Algorithm 1
is for the case when 10 users (not necessarily consecutive)
have given the same classification (only in terms of species
present). The final condition is for when 25 users have seen
the photo: if m is the median number of species each user
reports seeing, the m most common species are returned.

Most photos (74.6%) were blank. Of those blank photos,
93.8% were retired via condition 1. For non-blank photos,
97.3% were retired via condition 3. Non-blank photos re-
quired an average 16.6 user classifications. On average, over
all photos (blank and non-blank), Algorithm 1 needed 7.9
user classifications per photo.

Swanson et. al. created a set of 4,149 non-blank photos
with gold standard classifications. As of July 2014, Algo-
rithm 1 achieved an accuracy of 96.4% with respect to this
gold standard data. While this is an excellent rate, we note
two issues. First, although Snapshot Serengeti has been a
very popular project to date it is not a guarantee of future
success. In the future an average of even 8 users per photo
may not be a realistic target. Thus, there is a real need to

0 1
0 TN FN
1 FP TP

Table 1: A general confusion matrix for a binary classifica-

tion problem. Columns denote the actual class (either 0 or 1)

and rows denote the reported class (0 or 1). TP is true pos-
itive, FN is false negative, FP is false positive and TN is

true negative. Note that TN +FP = 1 and FN +TP = 1.

process photos more quickly. Second, for photos which have
already been retired, there is still room for improving upon
the current accuracy. This is especially important as the ac-
curacy of citizen science data in ecology is often questioned;
to demonstrate the usefulness of such projects, we need to
maximize the accuracy of our results.

Classifier Aggregation
We next review the current work done on classifier ag-
gregation, starting with the standard formal model (Kim
and Ghahramani 2012). Let the set of all users be K and
the set of all subjects be I . Let J be the set of all pos-
sible distinct classes for the subjects in I . A subject in
Snapshot Serengeti is a photo and an example class is
{grantGazelle ^ elephant}, i.e. a photo contains at least
one grant Gazelle and at least one elephant. For notational
simplicity, we will assume that every user views every sub-
ject (this is a straightforward assumption to relax). Let
c(k)i 2 J be the reported classification of subject i accord-
ing to user k. Let ti 2 J be the actual class of subject i. The
goal of classifier aggregation is, given {c(k)i } for all users
and subjects, to “estimate” ti with some aggregate classifi-

cation ci.
In the simplest case J is isomorphic to {0, 1} in which

case we would have a binary classification problem. For
such classification problems, a simple method for aggregat-
ing all of the users’ individual classifications into an overall
classification is majority voting (MV) where the aggregate
classification is set as (Littlestone and Warmuth 1994)

ci =

(
1 if

P
k c

(k)
i � |K|/2

0 otherwise.
(1)

With weighted majority voting (WMV) a weighting factor
wk is included with each user (Littlestone and Warmuth
1994).

Dawid and Skene proposed an approach to classifier ag-
gregation based on modeling users with confusion matri-

ces (Dawid and Skene 1977). For user k, the confusion ma-
trix ⇡(k) contains the element ⇡(k)

ti,c
(k)
i

which is the proba-

bility of the user reporting c(k)i given ti. An example con-
fusion matrix for binary classifications is shown in Table 1.
Dawid and Skene’s approach assumes that the actual class
for each subject is chosen independently at random accord-
ing to some probability distribution.

Kim and Ghahramani developed the Independent

Bayesian Classifier Combination (IBCC) method, a
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Bayesian adaptation of Dawid and Skene’s method (Kim
and Ghahramani 2012).The IBCC model keeps the
independent sampling assumption and the confusion
matrix representation of users. Subsequent work has
improved both the accuracy and computational ef-
ficiency of the IBCC model (Simpson et al. 2013;
Venanzi et al. 2014).

Other approaches do not assume independent sampling
or use confusion matrices. Work by Liu et. al. and Karger
et. al. assumes that each subject is equally difficult to cor-
rectly classify (Karger, Oh, and Shah 2011; Liu, Peng, and
Ihler 2012). Dalvi et. al.’s approach requires dealing with
matrices of size |K| · |I| (Dalvi et al. 2013). For Snapshot
Serengeti, with 35,000 users and 1.5 million subjects (pho-
tos), this would result in matrices with 54 billion cells.

Challenges of Classifier Aggregation with
Snapshot Serengeti

In this section, we discuss three critical assumptions made
in existing literature on classifier aggregation which do not
hold with Snapshot Serengeti: samples are taken indepen-
dently, all photos are equally difficult to classify, and users
can be modeled using a confusion matrix.

Swanson has shown that the first two assumptions, in-
dependence and equal difficulty, do not hold with Snap-
shot Serengeti (Swanson et al. 2014). Independence is of-
ten violated due to animals lingering in a given areas. Equal
difficulty is violated when some photos show a complete,
in-focus animal, while in other photos the animals may be
partly out of the photo, or so close that they are out of focus
and blurry. Photos taken at night are often harder to classify.

We next examine whether users can be modeled using
confusion matrices. One approach to such modeling might
be to consider every possible set of species which could
occur in a photo. For example, we would have the class
{wildebeest^zebra} for all photos containing both a wilde-
beest and a zebra. With 48 species, this would lead to 248

different classes. Most of these classes would never occur
in practice; for the photos with gold standard data available,
the maximum number of species in one photo was three.
However, we cannot know in advance which classes occur
and which do not. A more fundamental problem is the non-
sensical inferences that such an approach could lead to. For
example, one element of each user’s confusion matrix would
be ⇡(k)

(wildebeest,zebra),zebra, corresponding to a user confus-
ing the combination of a wildebeest and a zebra with just
a zebra. This is nonsensical; either the user simply missed
a wildebeest in the photo or the user confused a wildebeest
with a zebra.

Alternatively, we could use confusion matrices which
focus on individual species. For example, the element
⇡(k)
wildebeest,zebra would correspond to the probability of a

user confusing a wildebeest with a zebra. To use such a con-
fusion matrix, we would still need to understand the user’s
mistake exactly. There are multiple reasons why the user
might report {zebra} instead of {wildebeest ^ zebra}. To
determine which mistake the user actually made, we need to

Figure 1: Percentage of classifications with the correct ani-
mal count as a function of the number of animals actually in
the photo.

look the animal count for both species. If there is 1 wilde-
beest and 1 zebra and the user reported 1 zebra, we know
that the user missed the wildebeest. If the user reported 2
zebras, we know that the user confused the wildebeest with
a zebra.

Such reasoning requires users to give the correct animal
count. Figure 1 shows the percentage of user classifications
which give the correct animal count from the gold standard
data as a function of the number of animals in the photo.
We see that when there are only a few animals in a photo,
users almost always give the correct count (even if they do
not correctly identify the species). However, this consistency
decreases as the number of animals increases. If the user’s
count does not match the gold standard count, we cannot
deduce what mistakes the user may have made. Users are
also given the possibility of listing the number of animals as
“11-50” and “51+”. In these cases, even if the user is correct,
we (by design) cannot know exactly how many animals the
user saw.

Furthermore, how users make mistakes is dependent on
the number of animals in a photo. For example, suppose a
user is shown a series of photos all containing one wilde-
beest (and nothing else) and correctly classifies each photo
with a probability p. The user is then shown a series of pho-
tos all containing two wildebeests (and nothing else). If the
user is able to classify each wildebeest with the same “abil-
ity” as before, the probability of correctly classifying each
photo would improve to 1� (1� p)2.

Figure 2 shows the percentage of correct classifications
for a real Snapshot Serengeti user faced with the above
scenario with the number of wildebeests varied between 1
and 10. The user correctly classified 71.4% of the photos
containing only 1 wildebeest. The dashed line in Figure 2
shows the expected percentage of correct classifications if
the user’s classification ability was constant, i.e. for n wilde-
beests, we have 1 � 0.286n. For 2, 3, 4, 7, 8 and 10 wilde-
beests, we see that the user’s ability is roughly constant and
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Figure 2: For a single example user, the expected versus
actual percentage of correct wildebeest classifications as a
function of the number of wildebeests in the photo. The ex-
pected percentage is based on the assumption that the user
correctly identifies each wildebeest with a constant and in-
dependent probability.

matches our expected results. However, for 5, 6 and 9 wilde-
beests, the percentage of correctly classified photos is much
lower than expected. In fact, the percentage of correctly clas-
sified photos for 5 and 6 wildebeests is actually lower than
for 4 wildebeests. (The results are statistically significant.
For 9 wildebeests, the sample size is too small to reach a
conclusion.) The results are at first counterintuitive; increas-
ing the number of wildebeests in a photo should increase
the probability of classifying the photo as containing wilde-
beest. One possible explanation is that to fit a larger number
of animals into a picture, they may, on average, have to be
smaller. Additionally, a larger number of animals increases
the chances that some will be partially blocked, hiding fea-
tures necessary for a correct classification. Regardless of the
reason, this means that the way users analyze photos with
a single animal in them is not necessarily how they analyze
photos with multiple animals.

Thus, we have shown that confusion matrices are not a
reasonable approach to modeling users; we cannot always
understand the mistakes they make, in part because the mis-
takes are highly dependent on many different factors.

A New Approach
In this section, we present our classifier aggregation al-
gorithm developed for Snapshot Serengeti. We had three
main goals for our algorithm. First, given the existing user
data, to improve on the accuracy achieved by Snapshot
Serengeti’s current aggregation algorithm. Second, to mini-
mize the number of users needed to achieve any desired level
of accuracy. This will help speed up Snapshot Serengeti
in the future. Our final goal was simplicity. We needed to
create an algorithm that was intuitive and clear to non AI-
specialists, such as the Snapshot Serengeti ecologists.

Threshold 1 2 3 4
Error 8% 2.4% 0.2% 0%

Table 2: Estimated percentage of non-blank photos incor-
rectly classified as blank as a function of the threshold value
set in condition 1 in Algorithm 1.

For the reasons discussed in the previous section, we
discounted any approach which assumed independent sam-
pling, equal difficulty of classification or that a user could be
modeled using a confusion matrix. This left us with simple
algorithms such as majority voting (MV), weighted majority

voting (WMV) and Algorithm 1.
We first considered how to classify photos as blank. MV

and WMV were not useful because even if only a small mi-
nority of users classify a photo as non-blank, the photo prob-
ably is non-blank. People rarely see something when there
is nothing: out of all the blank photos currently retired, only
6% are retired via condition 2 in Algorithm 1 (the case where
at least one user classifies a blank photo as non-blank). For
such photos, there were an average of 4 non-blank classifi-
cations.

We were left with using Algorithm 1 to classify blank
photos. By the reasoning above, we believe that all blank
photos would have been correctly classified. Thus, we can-
not improve on the accuracy of Algorithm 1 (for blank pho-
tos) and we instead considered how to improve its efficiency,
for processing future photos. We could process blank photos
more quickly if we reduced the threshold in condition 1 of
Algorithm 1, currently set to 5. The risk is that decreasing
this threshold would increase the number of non-blank pho-
tos incorrectly classified as blank. Due to the lack of gold
standard data for blank photos, we do not know how many
such misclassified photos currently exist. However, we can
estimate how many additional misclassifications would oc-
cur if we decreased the threshold: a blank (aggregate) clas-
sification would occur if, by chance, the first n (individual)
classifications for a photo were blank where n is whatever
threshold we choose for condition 1. We examined 500 non-
blank photos and counted the number of “initial” blank clas-
sifications (i.e. those which occurred before any non-blank
classifications). The resulting distribution is shown in Ta-
ble 2. We see, for example, that if we were to decrease the
threshold to 2, an estimated 2.4% of photos currently classi-
fied as non-blank would be accidentally classified as blank.
There is concern that such photos would disproportionately
feature rare animals; users might be less confident classify-
ing species they are less familiar with. Thus, to err on the
side of caution, we selected a threshold of 4.

We next considered how to classify non-blank photos.
Our aim was to improve upon both the accuracy and effi-
ciency of Algorithm 1. We started by using MV (Equation 1)
with each species independently. For example, we labelled a
photo as containing a zebra if at least 50% of the users found
a zebra in that photo. Figure 3 shows the accuracy of this ap-
proach as a function of the number of users per photo. While
the accuracy of MV improves with each additional user, the
maximum accuracy of 96.0% is still slightly below the ac-
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Figure 3: The accuracy of majority voting (% of images cor-
rectly classified) as a function of the number of user classi-
fications per photo. The dashed line indicates the accuracy
achieved with the current Snapshot Serengeti algorithm (Al-
gorithm 1).

curacy of 96.4% achieved by Algorithm 1 (also shown in
Figure 3).

To see if a WMV based approach could be more success-
ful, we first divided the photos into two sets; those that were
easy to correctly classify and those that were hard to clas-
sify. A photo was easy if it was correctly classified by MV
and hard if it was incorrectly classified by MV. There was a
positive correlation between the percentage of easy photos
a user correctly classified and the percentage of hard photos
that user correctly classified (Pearson correlation coefficient
of 0.148). Users who classified fewer than 4 hard photos may
have just been “lucky”; if we exclude those users, we get a
significantly increased correlation (a Pearson coefficient of
0.401). This means that hard photos are not fundamentally
different from easy ones. These results suggest that we could
improve the accuracy of the classification of hard photos by
using WMV to give more weight to those users who are good
at classifying easy photos. Since we do not have gold stan-
dard data for all photos, in general we cannot be sure if a
photo is easy or hard. Given the high accuracy of MV, a rea-
sonable approximation would be to assume MV correctly
classifies all photos, i.e. all photos are easy.

Instead of having one overall measurement of each user’s
accuracy, we created a species specific metric; a user who is
highly accurate at classifying elephants is not necessarily as
accurate at classifying gazelles. An initial choice for user k
and species j was

wk(j) =
TP + TN

TP + FP + FN + TN
. (2)

All of the values on the RHS of Equation 2 are with respect
to both k and j: we omit the subscripts for notational clarity.
For species j and user k, Equation 2 is the number of cor-
rect classifications over the total number of classifications.
However, the negative occurrences will dominate the posi-

Figure 4: Average accuracy of Equation 4 as a function of �
in Equation 3.

tive ones as most photos will not contain a given species and
true negatives are a fairly easy outcome; people realize that
most photos do not contain a given species. Thus, the easy
cases will dominate the harder cases (i.e. the true positives)
which are a better measure of a user’s accuracy. We found a
more useful measurement of a user’s ability to be

wk(j) =
TP + �TN

TP + FP + FN + �TN
, (3)

where � 2 [0, 1] scales the contribution from the true neg-
atives. Thus ci(j), which indicates whether species j is in
photograph i, is set as:

ci(j) =

(
1 if

P
k wk(j)c

(k)
i � |K|/2

0 otherwise.
(4)

We next consider the optimal value for �. Figure 4 shows
the accuracy resulting from setting � to 0, 0.01, 0.2 or 1, as a
function of the number of user classifications per photo. For
all numbers of classifications per photo, � = 0.01 achieved
the highest accuracy. In fact, with only 5 users, � = 0.01
results in an accuracy of 97.5%, higher than the accuracy of
Algorithm 1 in Figure 3. Based on these results, we chose
� = 0.01 for our algorithm.

A standard method for increasing the accuracy of aggre-
gation algorithms is to provide gold standard data for some
of the subjects. We tested this approach using 5-fold cross
validation, i.e. we provided gold standard data for one fifth
of the photos and tested the accuracy of our algorithm on
the remaining photos. We then repeated this process 4 more
times, each time using a different fifth of the photos. The re-
sults (not shown) did not show any improvement, due to the
fact that MV already performed well enough that the addi-
tional information provided relatively little benefit. Another
standard technique would be to use an iterative approach and
repeatedly update users’ weights. This technique (results not
shown) also did not show any improvement since the users’
weights did not change after the first iteration.
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Figure 5: Average accuracy for our aggregation algorithm,
Algorithm 2, as a function of the number of user classifi-
cations per photo. The dashed line indicates the accuracy
achieved with the current Snapshot Serengeti algorithm (Al-
gorithm 1).

Algorithm 2 Our new aggregation algorithm.
if first 3 classifications are blank then

return blank
else if after 10 classification then

return Classification according to Equation 4
end if

Algorithm 2 shows our end algorithm, which classifies
both blank and non-blank photos. Figure 5 shows the ac-
curacy of Algorithm 2 with beta = 0.01 against the accu-
racy of the current Snapshot Serengeti algorithm (Algorithm
1). Even with only 5 classifications per photo, our algorithm
significantly outperforms Algorithm 1. With 10 users, our al-
gorithm achieves an accuracy of 98.6%. More than 10 users
did not result in any noticeable increase in accuracy. Based
on this result, we recommend setting the number of users
per photo to 10 for non-blank photos. With Algorithm 2, we
can reduce the average number of users needed per photo
to 5.8 while increasing the accuracy for non-blank photos to
98.6%. Our algorithm is more accurate (on average) than the
experts who helped create the gold standard data. 2

Conclusion
Camera traps are revolutionizing ecology while provid-
ing large amounts of raw data (images). The Serengeti
Lion Project is using camera traps to study animals in the
Serengeti. The Project, along with Zooniverse, created Snap-
shot Serengeti to get volunteers to help process this data.
Since volunteers may make mistakes, each image is shown
to multiple users and a critical task is to combine these indi-

2The gold standard data was created by aggregating, by hand,
the classifications from 7 individual experts who, on average, had
an accuracy of 97.7% (Kosmala 2013).

vidual classifications into aggregate classifications. We have
developed a new aggregation algorithm which is more effi-
cient (i.e. requires fewer users per photo) and more accurate
than the algorithm currently used by Snapshot Serengeti.
Our algorithm is even more accurate on average than indi-
vidual experts.

The possibility of applying our algorithm to other citizen
science projects analyzing camera trap studies is exciting.
We are also interested in further improving our algorithm’s
efficiency and accuracy. In particular, to increase efficiency,
we would like to retire blank photos more quickly. To in-
crease accuracy we would like to take advantage of the lack
of independent sampling; e.g. if a photo contains a zebra,
the probability that the next photo will also contain a zebra
is increased.
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