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Abstract 

Identifying a patient’s important medical problems requires 
broad and deep medical expertise, as well as significant time 
to gather all the relevant facts from the patient’s medical 
record and assess the clinical importance of the facts in 
reaching the final conclusion.  A patient’s medical problem 
list is by far the most critical information that a physician 
uses in treatment and care of a patient. In spite of its critical 
role, its curation, manual or automated, has been an unmet 
need in clinical practice.  We developed a machine learning 
technique in IBM Watson to automatically generate a pa-
tient’s medical problem list. The machine learning model 
uses lexical and medical features extracted from a patient’s 
record using NLP techniques. We show that the automated 
method achieves 70% recall and 67% precision based on the 
gold standard that medical experts created on a set of de-
identified patient records from a major hospital system in 
the US. To the best of our knowledge this is the first suc-
cessful machine learning/NLP method of extracting an 
open-ended patient’s medical problems from an Electronic 
Medical Record (EMR). This paper also contributes a meth-
odology for assessing accuracy of a medical problem list 
generation technique. 

 Introduction   

In clinical care, a patient’s medical problem list describes 
diagnosed diseases that require care and treatment as well 
as key medical symptoms that have not been diagnosed 
yet. Since the publication of Dr. Weed’s seminal paper on 
problem-oriented medical record (POMR) in 1968 (Weed, 
1968), organizing medical records around the problem list 
has come to be accepted as an important goal. However, 
creating and maintaining an accurate problem list has 
proved to be quite difficult. While the modern EMR sys-
tems improved patient data collection, the problem list 
maintenance was still left to manual efforts. Achieving the 
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goals of the meaningful use initiative and efficient medical 
care requires automated methods for generating the prob-
lem list and an assessment methodology of their accuracy.  
Since winning the American TV quiz game called Jeop-
ardy! in 2011 (IBM Research, 2012), we have been adapt-
ing IBM Watson to the medical domain so that the tech-
nology can help physicians and clinicians provide im-
proved care (Ferrucci, et al., 2013). A recent adaptation of 
IBM Watson is its application to Electronic Medical Rec-
ords Analysis (EMRA), of which the automated problem 
list generation described here is a key component. 
 The IBM Watson problem list generation starts with 
identification of a large pool of medical disorders men-
tioned in the clinical notes of a patient’s EMR and then 
whittles down this larger list to a smaller accurate problem 
list using NLP and machine learning.  
 To evaluate the accuracy of the Watson method, we 
asked medical experts to create a gold standard using 199 
EMRs acquired from Cleveland Clinic under an IRB pro-
tocol for the study. We set aside a test set of 40 random 
EMRs from the gold standard and used them to assess the 
accuracy of the Watson method. The Watson method recall 
is 70% and the precision is 67%, with an F1 score of 0.69. 
The key contribution of this paper is a practical and accu-
rate automated method of generating an open-ended prob-
lem list from a longitudinal EMR. 

Background 

Many hospitals and physicians are now routinely using 
EMRs as a part of patient care. An EMR typically contains 
several plain text documents known as clinical notes that 
are written as a result of patient contacts. An EMR also 
contains several sections of semi-structured data such as 
medications ordered, laboratory test results, and procedures 
conducted.  
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 An EMR usually contains a section for medical prob-
lems to be entered and maintained by physicians and clini-
cal staff. In spite of its clear value, however, the problem 
list section is rarely well maintained and almost always ig-
nored by physicians (Campbell, 1998) (Meystre & Haug, 
2008) (Holmes, 2011 Feb) (Holmes, 2011 Mar). Often 
stated reasons include: lack of proper support from EMR 
systems, lack of clarity of what goes on the list and when a 
problem (if at all) comes off of the list, multiple authors, 
and multiple and often contradictory uses of the list. Per-
haps the fundamental reason is that it is a knowledge and 
time intensive task requiring significant investment of an 
expert’s time, which is always in short supply. Therefore, it 
is a task that requires an automated and intelligent solution.  

Related Work 

There are several efforts to define better coding systems to 
represent medical problems (Campbell & Payne, 1994) and 
there is even more recent activity to define a new coding 
system based on a subset of SNOMED CT (US National 
Library of Medicine, 2014). However, the closest work, i.e. 
that of automation of problem list generation, is reported in 
a series of papers by Meystre and Haug (Meystre & Haug, 
2005) (Meystre & Haug, 2006) (Meystre & Haug, 2008).  
 The main result from the work of Meystre and Haug is 
the identification of a patient’s medical problems in a spe-
cific domain (e.g. cardiovascular patients) from a list of 
apriori identified problems using simple NLP techniques 
and an assessment methodology of its accuracy. What is 
common between their method and ours is that both ana-
lyze plain text clinical notes in patient medical records. 
However, the key difference is that our goal is an open-
ended problem list generation rather than limiting it to a 
list of diseases specific to a domain or a patient population. 
This difference is critical because the problem that is most 
important for patient care may be outside the known do-
main. 
 Because our goal is an open-ended problem list genera-
tion, our method cannot simply search for disease terms 
(and their semantic equivalents) from a list as in Meystre 
and Haug. For example, our approach is not that of as-
sessing if Myocardial Infarction is a problem for a patient, 
but that of assessing if any of the diseases, syndromes, 
symptoms, findings, or procedures appearing in a patient’s 
EMR should be in the patient’s medical list. As our other 
method is an open-ended problem list extraction and it is 
necessary to apply advanced AI techniques. 

Watson Problem List Generation 

As shown in Figure 1, Watson problem list generation be-
gins with an automated identification of medical concepts 

in all parts of an EMR – both in the plain text clinical notes 
and in the remaining semi-structured clinical data.  Terms 
representing medical concepts are assigned one or more 
Concept Unique Identifiers (CUIs) from the UMLS meta-
thesaurus (US National Library of Medicine, 2009). CUI 
mapping allows reasoning about medical concepts; for ex-
ample, it becomes possible to recognize that the phrases 
HTN, Hypertension, and High Blood Pressure all refer to 
the same disease. Also, they can be categorized into se-
mantic groups, e.g. as Disorders, Chemicals & Drugs, Pro-
cedures, etc. Each of these groups is further sub-
categorized, for example, Disorders are sub-grouped as 
Diseases or Syndromes, Signs or Symptoms, Findings, and 
others.  
Mapping terms to CUIs is, in itself an interesting research 
task. Both the CUI space and the term space are large and 
the mapping is many-to-many. Using the context around a 
term is often necessary to obtain a CUI that more accurate-
ly represents the concept. So, in Watson, in addition to the 
standard NLP and UMLS lookup, we use additional con-
textual and sentence structural information to obtain a bet-
ter mapping. (The details are beyond the scope of this pa-
per.) A numerical score indicates how confident we are 
that a CUI represents the original term, and it is used as a 
feature in problem list generation.  Once one or more CUIs 
for a concept are identified, the CUIs are then mapped to a 
SNOMED CT CORE (US National Library of Medicine, 
2014) concept. If there is no exact match, we climb the 
UMLS hierarchy until the closest parent that has a 
SNOMED CT CORE concept is reached.  
 For a typical EMR, usually a few hundred candidate 
problems are identified after the first step. When compared 
to the final list, the problems generated in the first step 
would have high recall (>90%) but poor precision (<10%). 
The subsequent steps attempt to improve precision of the 
problem list without substantial loss of recall. 

In the second step, the method produces feature values 
for the lexical and clinical features of the machine learning 
model. An example lexical feature is the TF-IDF of a po-

Figure 1 Watson Problem List Generation Overview 
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tential problem. An example clinical feature is the proba-
bility that at least one of the patient’s active medications is 
a treatment for this potential problem. Key features are 
listed and briefly described in Table 1 and further dis-
cussed later in the paper. We used the Alternating Decision 
Tree (Freund & Mason, 1999) technique for its accuracy 
and clarity of the decision process.  

The reason for representing the generated problems as 
the SNOMED-CT CORE concepts is that it is a result of 
the efforts to define a standard vocabulary for documenta-
tion and encoding of clinical information at a summary 
level, such as the problem list, discharge diagnosis, or the 
reason for an encounter (US National Library of Medicine, 
2014). 

Features 

Longitudinal EMRs are a rich source of information and a 
lot of data can be extracted. Assembling this extracted data 
into features with the appropriate type and level of aggre-
gation is a practical question and crucial to success. Key 
features that contributed to our final results are listed and 
briefly described in Table 1. Each feature category is ex-
plained in more detail in this section. 

Lexical Features 

Standard TF-IDF formulation is used, where TF is normal-
ized using the maximum frequency of any term in the doc-
ument. TF-IDF reflects how important a term is to a docu-
ment in a corpus. In our case, a term is a candidate prob-
lem. Depending on the goal, a document can be a note or 
an EMR. When generating the problem list for a patient, an 
EMR is a document and the entire collection of EMRs is 
our corpus. When deciding which note is more relevant to  
 
Table 1 Description of the Key Features of the Model 
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a selected problem, the note becomes the document and an 
EMR becomes the corpus. For the problem list generation,  
IDF is calculated using the entire de-identified EMR col-
lection that we have.  

Unlike a normal text document, an EMR is longitudinal 
record and therefore, more recent notes are likely to better 
represent the patient’s medical problems. Also, each note 
in the EMR has implicit sections and so a concept (e.g. hy-
pertension) appearing in different sections (e.g. family his-
tory vs. assessment and plan) may have significantly dif-
ferent meanings. Because of this, in addition to calculating 
TF at the EMR level, TF is also calculated for each note 
section and for a few different time periods. 

Medical Features 

Terms in the EMR semi-structured data are also mapped to 
UMLS CUIs so that we can use the UMLS relations. Med-
ications turn out to be one of the most important features, 
whereas we saw no benefit from the lab tests and proce-
dure orders. The first reason is that the medication names 
are relatively standardized, even while mixing the generic 
and brand names, and a UMLS CUI can be reliably found. 
Conversely, labs and procedures are often specified in in-
stitution specific abbreviations instead of CPT codes and 
LOINC codes, and are therefore harder to accurately map 
to UMLS concepts. Second, medications are prescribed to 
treat problems, while lab tests and procedures are often or-
dered to diagnose a problem and extensive domain 
knowledge is needed to interpret their results. The relation 
between a problem and a medication is derived from a 
weighted confidence score obtained from distributional 
semantics (Gliozzo, 2013) and UMLS relationships. 

Frequency Features 

Frequency of a problem can be thought of as the prior 
probability that the patient may have it. Two sources of 
frequency are used in our experiments. The first is the 
SNOMED CORE usage (US National Library of Medicine, 
2014), which represents the frequency in a broad popula-
tion. The second is calculated using all diagnosed problems 
(as ICD-9 codes) in our collection of EMRs, which repre-
sents the frequency in this particular institution.  

Structural Features 

The concept “diabetes mellitus” appearing in the assess-
ment and plan (informal) section in a patient’s progress 
note is a much stronger indicator that the patient has the 
disorder than the same concept detected in the family his-
tory section in a nursing note. Since notes are in plain text 
and note metadata is optional, the structures have to be 
learned. Informal sections of a note are detected with regu-
lar expressions and heuristic rules. Note types are learned 
using a Maximum Entropy classifier with the available 
metadata, and several medical and lexical features from the 
note text.  
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Temporal Features 

The span of an EMR varies from a single day to several 
decades. Most temporal features in our experiments are 
normalized to prevent bias towards longer EMRs, but ab-
solute value is also used to define certain features, e.g. note 
recency, where the recency is defined as the number of 
days from the latest patient contact. 

Temporal data is used in three ways. First, it is used as 
features directly. Temporal features considered include the 
first/last mention of a problem, and the duration of a prob-
lem. Second, it is used to align semi-structured data and 
structure data, e.g. a medication prescribed before a prob-
lem is mentioned in a note is not considered as evidence to 
the problem. Third, temporal data is used to divide notes 
into bins on the timeline so that frequency can be counted 
by intervals, e.g. TF in recent notes vs. TF in earlier notes.  

Model 

We construct problem list generation as a binary classifica-
tion problem, i.e., for each candidate problem in an EMR, 
the task is to classify it as a problem or a non-problem. We 
initially used a SVM model (Cortes & Vapnik, 1995) 
(Chang & Lin, 2011) with linear kernel, but soon favored 
more human interpretable models. As the gold-standard is 
expensive to get and the training data is limited, knowledge 
coming from domain experts and error analyses become 
critical to success – and both benefit from models that out-
put human understandable decision process. Decision tree 
and association rules based classifiers generate models 
close to the way medical experts think, at the cost of usual-
ly lower accuracy. We observed performance similar to our 
earlier SVM model by using alternating decision tree 
(ADT) (Freund & Mason, 1999), which outputs an option 
tree but has its root in boosting. The basic implementation 
of ADT (Hall, et al., 2009) uses a decision stump as the 
base learner and adaptive boosting to grow the tree itera-
tively. During a boosting iteration, ADT adds a splitter 
node and corresponding prediction nodes to extend one of 
the existing paths in the tree. The scores associated with 
the prediction nodes are obtained from the rules. 

Model parameters are selected using 10-fold cross-
validation. The number of iterations of ADT is set to 30 
(from the ROC and the Recall-Precision graphs), and the 
score threshold is set to 0.85, to maximize the training F1 
score. A subset (some branches are omitted after the first 
two levels) of the tree generated by our model is shown in 
Figure 2.  

Being a boosted algorithm, ADT picks the strongest 
weak learner first, which is, in our experiments, the prob-
lem diagnosed frequency. In each iteration, the misclassi-
fied instances are given a larger weight while correctly 
classified problems are given reduced weight – so the 
model consequently focuses on classifying the hard in-

stances correctly. The top level features in Figure 2 are all 
intuitive – but it is important to understand that they are 
not necessarily the most important features to determine 
whether a candidate problem is, in fact, a patient’s active 
problem – they simply work better for the easy instances. 
Some less intuitive features also shed some light on how 
EMRs are written. For example, it is a positive indicator, if 
a problem appears in the first section, regardless of what 
the section is. This is because many EMRs start by stating 
the patient’s active concerns. Another example is the first 
mention date because a patient’s past medical history are 
often carefully documented in his/her first visit to the hos-
pital. 

Gold Standard and Accuracy Analysis 

To the best of our knowledge, there is no publicly available 
gold standard for problem lists, so we developed a gold 
standard of our own. The process involved two fourth year 
medical students studying 199 EMRs and each creating a 
problem list for each of the EMRs. An MD/PhD then re-
viewed and adjudicated any differences between the stu-
dents’ problem lists for each EMR. The gold standard 
problem list is coded using the CORE subset of SNOMED 
CT. Often there are more than one code that is a good 
match to a medical problem. In these cases, all codes are 
considered acceptable codes for the problem.   

We compared the Watson generated problem lists with 
the problem lists in this gold standard. If a problem appears 
on both problem lists of an EMR, then it is a true positive. 
If a problem appears in the gold standard for an EMR, but 
not in the Watson’s generated list for the EMR, then it is a 
false negative. If a problem appears in the Watson generat-
ed list but not in the gold standard for the EMR then it is a 
false positive. However, in the case a problem has more 
than one acceptable code, matching any one code counts as 
one TP. In a stricter analysis that we report separately, if 
Watson reports some or all of the acceptable codes as sepa-
rate problems, we consider only one as TP and the others 
are considered as FP. 

Figure 2 First two levels of our ADT model 
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Results 

In this section we present results that provide not only the 
method accuracy, but also the insights that characterize the 
challenges of problem list generation. 

 

Candidate problems 

Figure 3 shows a distribution of the number of candidate 
problems generated per EMR (across all 199 EMRs). We 
see a nearly normal distribution, with an average of 135 
candidate problems and a standard deviation of 33. The 
machine learning model reduces these candidate problems 
to an average of 9 predicted final problems, a reduction by 
over 93%. 

Confusion Matrix and F Scores 

Table 2 shows the confusion matrix for the model on a test 
set of 40 EMRs from the 199 gold standard set. The re-
maining 159 EMRs are used to train the model. As we are 
analyzing the accuracy in predicting each problem here, 
EMRs with a larger number of problems (as per the gold 
standard) have a more significant influence on the results 
than the EMRs with fewer problems. 
 

 

The summary of the accuracy analysis, presented in Ta-
ble 3, shows recall of 70% and precision of 67%, resulting 
in an F1 score 0.69 for the Watson method. This is 
achieved with a candidate filtering threshold of 0.85 in the 
machine learning model. For patient care, higher problem 

list recall may be more important than precision (i.e. don’t 
miss a problem even if the list is a bit more noisy) and in 
that case by selecting a lower threshold (0.70) we can 
achieve recall of 80% and precision of 53%, resulting in an 
F2 score 0.73. 
 

 
In a stricter analysis of Watson accuracy, where we con-

sidered the additional acceptable codes it generates (be-
yond the first one) as FP, the correspondingly highest F1 
score is 0.67 and the highest F2 score is 0.72. 

Most frequent problems 

Figure 4 shows the 15 most frequently occurring problems 
and their frequency in the gold standard. Juxtaposed 
against them, the Figure also shows that the Watson pre-
diction closely follows the gold standard, and so we may 
conclude that Watson performances well for frequently oc-
curring problems. However, lower back pain provides an 
interesting contrast: It is a challenge for our model because 
there is usually no medication for it and medical experts 
used somewhat non-specific reasons, such as the severity 
and there not being another problem that explains the find-
ing, for including it in the gold standard. 

Features with the strongest contribution 

Which features had the strongest positive contribution for 
correct predictions in the Watson method? Figure 2 shows 
the top two levels of the ADT for the model used in Wat-
son. Problem occurrence frequency, whether it is in the di-
agnosis codes, S_PMH (whether the problem is in the pre-
vious medical history part of a note), and the fact that the 
patient is on a medication that may treat the problem have 
the strongest influence on correct predictions. 

Discussion 

Does this result generalize? The content and the format of 
the EMRs we used here for training and testing are neither 
unique nor customized for this application.  The feature 
set, the methodology for extracting feature values and for 
calculating feature scores, and the machine learning tech-

Figure 3 Distribution of the number of candidate problems  

Table 2 The Confusion Matrix showing Watson accuracy based 
on the 40 test EMRs 

Table 3 Summary of the Accuracy Analysis 
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niques used here are broadly applicable to EMRs from any 
hospital system and to data from most EMR vendor prod-
ucts. We believe the method and the results will therefore 
generalize very well. 

What can be done to improve the accuracy further? This 
is a subject of our ongoing research, but our initial analysis 
of incorrect predictions points to a few areas of possible 
improvement. First, better tuned, broad scoped (i.e. sen-
tence and paragraph level) negation detection would avoid 
several false positives. Second, while our method is suited 
for extracting previously diagnosed diseases, the gold 
standard contains undiagnosed diseases that are implied by 
symptoms present in EMRs. Third, mental disorders re-
quire improved support for identification and similarity 
reasoning. De-identification of clinical notes, abbrevia-
tions, and generally informal style of writing notes (i.e. 
many cut-and-paste and non-sentences) are the other caus-
es of inaccuracy. We are continuing to improve the accura-
cy of our method.  

Conclusion 

Prior to this work, what was well established, in prototype 
applications, software libraries, and even in commercial 
products, is the ability to extract medical concepts repre-
senting diseases, syndromes, signs, symptoms, etc., from 
any medical text and EMR data. It was also shown, with a 
prototype implementation and formal assessment ap-
proaches, that a known list of problems in a certain narrow 
medical domain, such as the cardiovascular diseases, can 
be identified.  

This emerging application demonstrated that an open-
ended medical problem list can be generated from an EMR 
with high accuracy. NLP and machine learning techniques 
can be successfully applied to EMR contents to generate 
these medical problems. This application can be used to 
automate the management of problem lists, and as such, 
contributes to improved patient care. 
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