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Abstract 
The Digital Clock Drawing Test is a fielded application that 
provides a major advance over existing neuropsychological 
testing technology. It captures and analyzes high precision 
information about both outcome and process, opening up 
the possibility of detecting subtle cognitive impairment even 
when test results appear superficially normal. We describe 
the design and development of the test, document the role of 
AI in its capabilities, and report on its use over the past 
seven years. We outline its potential implications for earlier 
detection and treatment of neurological disorders. We also 
set the work in the larger context of the THink project, 
which is exploring multiple approaches to determining 
cognitive status through the detection and analysis of subtle 
behaviors. 

 Introduction  
We describe a new means of doing neurocognitive testing, 
enabled through the use of an off-the-shelf digitizing 
ballpoint pen from Anoto, Inc., combined with novel 
software we have created. The new approach improves 
efficiency, sharply reducing test processing time, and 
permits administration and analysis of the test to be done 
by medical office staff (rather than requiring time from 
clinicians). Where previous approaches to test analysis 
involve instructions phrased in qualitative terms, leaving 
room for differing interpretations, our analysis routines are 
embodied in code, reducing the chance for subjective 
judgments and measurement errors. The digital pen 
provides data two orders of magnitude more precise than 
pragmatically available previously, making it possible for 
our software to detect and measure new phenomena. 
Because the data provides timing information, our test 
measures elements of cognitive processing, as for example 
allowing us to calibrate the amount of effort patients are 
expending, independent of whether their results appear 
normal. This has interesting implications for detecting and 
treating impairment before it manifests clinically. 

The Task 

For more than 50 years clinicians have been giving the 
Clock Drawing Test, a deceptively simple, yet widely 
accepted cognitive screening test able to detect altered 
cognition in a wide range of neurological disorders, 
including dementias (e.g., Alzheimer’s), stroke, 
Parkinson’s, and others (Freedman 1994) (Grande 2013). 
The test instructs the subject to draw on a blank page a 
clock showing 10 minutes after 11 (called the “command” 
clock), then asks them to copy a pre-drawn clock showing 
that time (the “copy” clock). The two parts of the test are 
purposely designed to test differing aspects of cognition: 
the first challenges things like language and memory, 
while the second tests aspects of spatial planning and 
executive function (the ability to plan and organize). 

As widely accepted as the test is, there are drawbacks, 
including variability in scoring and analysis, and reliance 
on either a clinician’s subjective judgment of broad 
qualitative properties (Nair 2010) or the use of a labor-
intensive evaluation system. One scoring technique calls 
for appraising the drawing by eye, giving it a 0-3 score, 
based on measures like whether the clock circle has “only 
minor distortion,” whether the hour hand is “clearly 
shorter” than the minute hand, etc., without ever defining 
these criteria clearly (Nasreddine 2005). More complex 
scoring systems (e.g., (Nyborn 2013)) provide more 
information, but may require significant manual labor (e.g., 
use of rulers and protractors), and are as a result far too 
labor-intensive for routine use.  

The test is used across a very wide range of ages – from 
the 20’s to well into the 90’s – and cognitive status, from 
healthy to severely impaired cognitively (e.g., 
Alzheimer’s) and/or physically (e.g., tremor, Parkinson’s). 
Clocks produced may appear normal (Fig. 1a) or be quite 
blatantly impaired, with elements that are distorted, 
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misplaced, repeated, or missing entirely (e.g., Fig 1b). As 
we explore below, clocks that look normal on paper may 
still have evidence of impairment. 
 
 
 
 
 
 
 
 
 

Figure. 1: Example clocks – normal appearing (1a) 
and clearly impaired (1b). 

Our System 
Since 2006 we have been administering the test using a 

digitizing ballpoint pen from Anoto, Inc.1 The pen 
functions in the patient’s hand as an ordinary ballpoint, but 
simultaneously measures its position on the page every 
12ms with an accuracy of ±0.002”. We refer to the 
combination of the pen data and our software as the Digital 
Clock Drawing Test (dCDT); it is one of several 
innovative tests being explored by the THink project.  

Our software is device independent in the sense that it 
deals with time-stamped data and is agnostic about the 
device. We use the digitizing ballpoint because a 
fundamental premise of the clock drawing test is that it 
captures the subject's normal, spontaneous behavior. Our 
experience is that patients accept the digitizing pen as 
simply a (slightly fatter) ballpoint, unlike tablet-based tests 
about which patients sometimes express concern. Use of a 
tablet and stylus may also distort results by its different 
ergonomics and its novelty, particularly for older subjects 
or individuals in developing countries. While not 
inexpensive, the digitizing ballpoint is still more 
economical, smaller, and more portable than current 
handheld devices, and is easily shared by staff, facilitating 
use in remote and low income populations.. 

The dCDT software we developed is designed to be 
useful both for the practicing clinician and as a research 
tool. The program provides both traditional outcome 
measures (e.g., are all the numbers present, and in roughly 
the right places) and, as we discuss below, detects subtle 
behaviors that reveal novel cognitive processes underlying 
the performance. 

Fig. 2 shows the system’s interface. Basic information 
about the patient is entered in the left panel (anonymized 
here); folders on the right show how individual pen strokes 
have been classified (e.g., as a specific digit, hand, etc.). 

                                                 
1 Now available in consumer- oriented packaging from LiveScribe. 

Data from the pen arrives as a set of strokes, composed in 
turn of time-stamped coordinates; the center panel can 
show that data from either (or both) of the drawings, and is 
zoomable to permit extremely detailed examination of the 
data if needed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The program interface 
In response to pressing one of the “classify” buttons, the 

system attempts to classify each pen stroke in a drawing. 
Colored overlays are added to the drawing (Fig. 3, a close-
up view) to make clear the resulting classifications: tan 
bounding boxes are drawn around each digit, an orange 
line shows an ellipse fit to the clock circle stroke(s), green 
and purple highlights mark the hour and minute hands. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Partially classified clock 
The classification of the clock in Fig. 2 is almost entirely 

correct; the lone error is the top of the 5, drawn sufficiently 
far from the base that the system missed it. The system has 
put the stroke into a folder labeled simply “Line.” The 
error is easily corrected by dragging and dropping the 
errant stroke into the “Five” folder; the display 
immediately updates to show the revised classification. 
Given the system’s initial attempt at classification, clocks 
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from healthy or only mildly impaired subjects can often be 
correctly classified in 1-2 minutes; unraveling the 
complexities in more challenging clocks can take 
additional time, with most completed within 5 minutes. 
The drag and drop character of the interface makes 
classifying strokes a task accessible to medical office staff, 
freeing up clinician time. The speedy updating of the 
interface in response to moving strokes provides a game-
like feeling to the scoring that makes it a reasonably 
pleasant task. 

Because the data is time-stamped, we capture both the 
end result (the drawing) and the behavior that produced it: 
every pause, hesitation, and time spent simply holding the 
pen and (presumably) thinking, are all recorded with 12 ms 
accuracy. Time-stamped data also makes possible a 
technically trivial but extremely useful capability: the 
program can play back a movie of the test, showing exactly 
how the patient drew the clock, reproducing stroke 
sequence, precise pen speed at every point, and every 
pause. This can be helpful diagnostically to the clinician, 
and can be viewed at any time, even long after the test was 
taken. Movie playback speed can be varied, permitting 
slowed motion for examining rapid pen strokes, or sped up 
for clocks by patients whose impairments produce vastly 
slowed motions. Movie playback can also be a useful aid 
when reviewing the classification of strokes in complex 
clocks. 

The spatial and temporal precision of the data provides 
the basis for an unprecedented degree of analysis. The 
program uses the data to rapidly compute ~500 properties 
of the drawing that we believe are useful diagnostically 
(more on this below), including both traditional outcome 
measures and novel measures of behavior (e.g., pauses, pen 
speed, etc.). Because all the measurements are defined in 
software, they are carried out with no user bias, in real 
time, at no additional burden to the user. 

The program makes it easy to view or analyze its results: 
it can format the results of its drawing analysis for a single 
test (i.e., the ~500 measurements) as a spreadsheet for easy 
review; provide comparison metrics on select variables of 
interest for glanceable clinician review; and can add the 
data to an electronic medical record. It also automatically 
creates two versions of each test result: One contains full 
patient identity data, for the clinician’s private records, the 
second is de-identified and exportable to a central site 
where we accumulate multiple tests in a standard database 
format for research.  

The program includes in the test file the raw data from 
the pen, providing the important ability to analyze data 
from tests given years ago with respect to newly created 
measures, i.e., measurements conceptualized long after that 
data has been collected.  

The program also facilitates collection of data from 
standard psychometric tests (e.g., tests of memory, 

intelligence), providing a customizable and user-friendly 
interface for entering data from 33 different user-selectable 
tests.  

To facilitate the quality control process integral to many 
clinical and research settings, the program has a “review 
mode” that makes the process quick and easy. It 
automatically loads and zooms in on each clock in turn, 
and enables the reviewer to check the classifications with a 
few keystrokes. Clock review typically takes 30 seconds 
for an experienced reviewer. 

The program has been in routine use as both a clinical 
tool and research vehicle in 7 venues (hospitals, clinics, 
and a research center) around the US, a group we refer to 
as the ClockSketch Consortium. The Consortium has 
together administered and classified more than 2600 tests, 
producing a database of 5200+ clocks (2 per test) with 
ground-truth labels on every pen stroke. 

AI Technology Use and Payoff 
As noted, our raw input is a set of strokes made up of time-
stamped coordinates; classifying the strokes is a task-
specific case of sketch interpretation. As with any signal 
interpretation task, we are dealing with plausible guesses 
rather than guarantees, especially given the range of inputs 
we must handle (e.g., Fig. 1b). 

The program starts by attempting to identify subsets of 
strokes corresponding to three major elements: the clock 
circle, digits, and hands. The clock circle is typically the 
longest circular stroke (or strokes), often but not inevitably 
drawn first. The program identifies these and fits an ellipse 
to those points.  

Our earliest approach to digit isolation and identification 
used the clock circle to define an annulus, then segmented 
the annulus into regions likely to contain each of the 12 
numerals. Segmentation was done angularly, by a simple 
greedy algorithm: the angle to each stroke was measured 
from the estimated clock center, the angular differences 
ordered, and the (up to) 12 largest angular differences 
taken as segmentation points. Strokes in each segment 
were classified by the angular position of the segment (e.g., 
the segment near the 0-degree position was labeled as a 
“3”).  

Hand candidates are identified by finding lines with 
appropriate properties (e.g., having one end near the clock 
circle center, pointing toward the 11 or 2, etc.). 

This extraordinarily simple approach worked 
surprisingly well for a wide range of normal and slightly 
impaired clocks. 

We have since developed a far more sophisticated 
approach to digit isolation and identification able to deal 
with more heavily impaired clocks. It starts by using k-
means to identify strokes likely to be digits, employing a 

2900



metric combining time (when it was drawn) and distance 
(stroke midpoint to clock center). The metric is based on 
the observation that numerals are likely to be further from 
the clock center and are usually drawn all at once. This set 
of strokes is divided into subsets likely to be individual 
digits using a novel representation we call spatio-temporal 
slices, that combines angle and timing information. In the 
simpler cases it performs much like the original angle-
based segmenter described above, but offers the interesting 
ability to “unpeel” layers of ink resulting from crossed out 
and/or over-written digits, which often produce an 
incomprehensible collection of ink (e.g., Fig. 4). 

 
 

 
 
 

Fig. 4: Overwritten digits (12 over-written with a 6) 
The stroke subsets likely to be individual digits are then 

identified using a recognizer (Ouyang 2009) trained on 
digits from 600 clocks from healthy individuals. The 
recognizer works from visual features and is thus 
determining what the strokes look like, independent of how 
they were drawn (i.e., independent of order  and timing). 

Finally, context matters. The final classification of a set 
of strokes that could be either a 3 or a 5, for example, 
should of course depend in part on where in the clock face 
they appear. We accomplish this with a conditional random 
field trained on triples of angularly sequential digits from 
clocks drawn by healthy individuals, enabling the system 
to classify a digit based in part on the interpretation of the 
digits on either (angular) side of the current candidate. 

The resulting system has >96% digit recognition on 
clocks from healthy individuals2 along with the ability to 
unpack and interpret the otherwise incomprehensible layers 
of ink produced by crossing out and/or over-writing. 

Machine Learning Results 
The Clock Drawing Test is designed to asses diverse 
cognitive capabilities, including organization and planning, 
language and memory, and has utility for as a screening 
test, aiding in determining whether performance in any of 
these areas is sufficiently impaired as to motivate follow-
up testing and examination. Our collection of several 
thousand classified clocks offered an opportunity to use 
machine learning to determine how much useful 
information there may be in the hundreds of features 
computed for each clock. 

We selected three diagnoses of particular clinical interest 
and for which we had large enough samples: Alzheimer’s 

                                                 
2 Note that “drawn by healthy individuals” does not mean “free of error.” 

(n=146), other dementias (n=76) and Parkinson’s (n=84). 
We used these diagnoses to explore the effectiveness of a 
large collection of machine learning algorithms, including 
SVMs, random forests, boosted decision trees, and others. 
They were trained to produce binary classifiers that 
compared each diagnosis against known-healthy patients 
(telling us whether the variables would be useful for 
screening), and each diagnosis against all conditions 
(telling us whether they would be useful in differential 
diagnosis). 

In general, linear SVM’s (Table I) produced the best 
results. As expected, the data sets are imbalanced. 
Accuracy rates are good and AUC’s are acceptable, but the 
F1 scores are disappointing in some cases due to low 
precision rates. As the groups selected for this study have 
known clinical overlap (e.g., Parkinson’s and other 
dementia may have comorbid Alzheimer’s), low precision 
rates may (accurately) reflect this diagnostic overlap.  We 
believe the classifiers may improve as we get additional 
tests from true positive subjects, and as we learn what 
additional features may be useful. 
 

Parkinson’s (P) vs Healthy (H)  Dementia (D) vs Healthy 
 class'd P class'd H   class'd D class'd H 
P 56 28  D 48 28 
H 52 732  H 84 476 
Acc 0.908 AUC 0.74  Acc 0.824 AUC 0.70 
F1 0.583   F1 0.462  

 
Alzh. (Az) vs Healthy (H)  Parkinson’s (P) vs All (-P) 

 class'd Az class'd H   class'd P class'd -P 
Az 132 52  P 44 40 
H 64 496  -P 204 1740 
Acc 0.84 AUC 0.76  Acc 0.880 AUC 0.73 
F1 0.69   F1 0.265  

 
Dementia (D) vs All (-D)  Alzheimer’s  (Az) vs All (-Az) 

 class'd D class'd -D   class'd Az class'd -Az 
D 24 52  Az 104 80 
-D 304 1648  -Az 168 1676 
Acc 0.824 AUC 0.68  Acc 0.878 AUC 0.65 
F1 0.119   F1 0.456  

Table I: SVM results3 
One evident follow-up question is, how good is this 

result? What baseline do we compare it to? It would be 
best to compare to clinician error rate on judgments made 
from the same clock test data, but that is not available. 
There are, however, a number of established procedures 
designed to produce a numeric score for a clock (e.g., from 
0-6), indicating where it sits on the impaired vs. healthy 
continuum. We are working to operationalize several of 
these, which as noted requires making computational 
something that was written for application by people, and 
that is often qualitative and vague. Once operationalized, 

                                                 
3 The healthy counts differ in order to ensure age-matched comparisons. 
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we will be able to use these established procedures to 
produce their evaluation of all of our clocks. We will then 
train and test the performance of classifiers using each of 
those metrics as the test feature, and can then use this as a 
performance baseline against which to evaluate the results 
above. 

We have also explored the use of a number of data 
mining algorithms, including Apriori, FPGrowth, and 
Bayesian List Machines (BLM) (Letham 2012), in an 
attempt to build decision models that balance accuracy and 
comprehensibility. Particularly with BLM, the goal is to 
produce a decision tree small enough and clear enough to 
be easily remembered and thus incorporated into a 
clinician’s routine practice.  

Clinical Payoff 
Our dCDT program has had an impact in both research 

and practice. The collection and analysis of the wealth of 
high-precision data provided by the pen has produced 
insights about novel metrics, particularly those involving 
time, an advance over traditional clock drawing test 
evaluation systems, which focus solely on properties of the 
final drawing (e.g., presence/absence of hands, numbers, 
circle). The new metrics are valuable in daily practice and 
used by clinicians for their insight into the subject’s 
cognitive status. 

Time-dependent variables have, for example, proven to 
be important in detection of cognitive change. They can 
reveal when individuals are working harder, even though 
they are producing normal-appearing outputs. As one 
example, total time to draw the clock differentiates those 
with amnestic Mild Cognitive Impairment (aMCI) and 
Alzheimer’s disease (AD) from healthy controls (HC) 
(Penney at al. 2014).  

Additional pilot data suggests that AD can be 
distinguished from HC by comparing the percent of time 
spent during the task thinking (i.e., not making marks on 
paper, “think time”) with the percent of time spent drawing 
(“ink time”) independent of what was drawn (Penney et al. 
2013b). 

We have also defined a measure we call pre-first-hand 
latency (PFHL), measuring the precise amount of time the 
patient pauses between drawing the numbers on the clock 
and drawing the first clock hand. PFHL appears to 
distinguish normal patients from those with aMCI, AD, 
and vascular dementia (vAD) (Penney et al. 2011a).  

These diagnostic groups also differed in how they spent 
their think time: PFHL and total clock drawing time are 
longer for AD and aMCI as compared to HC (Penney et al. 
2011a). We believe PFHL is one measure of decision 
making, with longer latencies apparent in individuals with 
cognitive problems (like MCI). Importantly, our analysis 
of timing information means we detect these latencies even 

in drawings that appear completely normal when viewed as 
a static image.  

Other aspects of diagnostic significance overlooked by 
traditional feature-driven scoring include overall clock 
size, which we have found differentiates HC from aMCI 
(smaller), and aMCI from AD (smallest) independent of 
what is drawn. Patients with AD appear to work longer and 
harder, but produce less output (i.e., less ink and smaller 
clocks) when compared to cognitively intact participants 
(Penney et al. 2014). 

Another novel variable we have uncovered concerns the 
seemingly inadvertently produced ink marks in a clock 
drawing: these are pen strokes contained within the clock 
face circle, but not clearly identifiable as clock elements. 
One class of strokes that we call “noise” has typically been 
thought to be meaningless and is ignored in traditional 
analysis. Yet one of our studies (Penney et al. 2011b) 
found interesting information in the length and location of 
these strokes. We found that healthy controls (HC) made 
very few of the smallest noise strokes (those <0.3mm), 
while clinical groups, including those with MCI, made 
significantly more longer noise strokes, distributed largely 
in the upper right and left quadrants of the clock (i.e., 
locations on the clock where patients must negotiate the 
request to set clock hands to read “10 after 11”). We 
hypothesize that noise strokes may represent novel 
hovering-type marks associated with decision-making 
difficulty in time-setting.  

All of these features are detected and quantified by the 
program, producing information that clinicians find useful 
in practice. 

Development and Deployment 
From its inception this project has been produced with 
quite spare resources (i.e., a few small seedling grants). 
The Java code base has (and continues to be) produced by 
a sequence of talented undergraduate programmers and one 
computer science professor, inspired, guided, and informed 
by a few highly experienced neuroscientists who donate 
their time because they see the opportunity to create a 
fundamentally new tool for assessing cognitive state.  

We started by reconceptualizing the nature of cognitive 
testing, moving away from the traditional approach of “one 
test one cognitive domain” (e.g., separate tests for memory, 
executive function, etc.) with standard outcome measures, 
re-focusing instead on the cognitive processes inherent in 
the drawing task. We broke the complex behavior of clock 
drawing down to its most basic components (pen strokes), 
but ensured that we also captured behavioral aspects. We 
piloted the program at a key clinical site, collecting 
hundreds of clocks that were used to further refine our set 
of measurements. 
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We developed a training program for technicians who 
administer the test and classify strokes, and adapted the 
software to both PCs and Macs. We recruited beta testing 
sites throughout the US, forming the ClockSketch 
Consortium. We hosted user training sessions to ensure 
standard testing and scoring procedures, and measured user 
proficiency across sites. We established a collaboration 
with the Framingham Heart Study, a large scale 
epidemiological study, to enable the development of 
population based norms for our measures. 

 Our ongoing development was significantly aided by a 
key design decision noted above – the raw pen data is 
always preserved in the test file. This has permitted years 
of continual growth and change in the measurements as we 
discover more about the precursors to cognitive change, 
with little to no legacy code overhead. 

Our deployment strategy has been one of continual 
refinement, with new versions of the system appearing 
roughly every six months, in response to our small but 
vocal user community, which supplied numerous 
suggestions about missing functionality and improvements 
in the user interface. 

One standard difficulty faced in biomedical applications 
is approval by internal review boards, who ensure patient 
safety and quality of care. Here again the use of the digital 
pen proved to be a good choice: approval at all sites was 
facilitated by the fact that it functions in the patient’s hand 
as an ordinary pen and presents no additional risk over 
those encountered in everyday writing tasks. 

Next Steps 
The Digital Clock Drawing Test is the first of what we 
intend to be a collection of novel, quickly administered 
neuropsychological tests in the THink project. Our next 
development is a digital maze test designed to measure 
graphomotor aspects of executive function, processing 
speed, spatial reasoning and memory. We believe that use 
of the digital pen here will provide a substantial body of 
revealing information, including measures of changes in 
behavior when approaching decision points (indicating 
advanced planning), length of pauses at decision points (a 
measure of decision-making difficulty), changes in these 
behaviors as a consequence of priming (a measure of 
memory function), speed in drawing each leg of a solution 
(measures of learning/memory), and many others.  

Capturing these phenomena requires designing mazes 
with new geometric properties. Because maze completion 
is a complex task involving the interplay of higher-order 
cognition (e.g., spatial planning, memory), motor 
operations (pen movement) and visual scanning (eye 
movement to explore possible paths), little would be 
gained by simply using a digital pen on a traditional maze. 

We have designed mazes that will distinguish the 
phenomena of interest.  

We have also created mazes of graded difficulty, 
accomplished by varying characteristics of the maze, as for 
example the number of decision points and the presence of 
embedded choice points. These features will allow us to 
explore difficulty-tiered decision making by measuring 
changes in speed approaching a decision point, the length 
of pauses at each of those points, and by detecting and 
analyzing errors (e.g., back-tracking, repetition of a wrong 
choice, etc). Tiered decision making is in turn an important 
measure of executive function that will enable us to detect, 
measure, and track subtle cognitive difficulty even in 
correctly solved mazes. We hypothesize that individuals 
with subtle cognitive impairment, as in MCI and other 
insidious onset neurologic illness (e.g., AD, PD), will 
pause longer than healthy controls at more difficult 
decision junctions, while demonstrating only brief or no 
pauses at easier junctions. We posit that these pauses will 
be diagnostic even when the correct path solution is 
chosen. The inclusion of tiered difficulty will allow us to 
grade cognitive change by assessing cognition at various 
levels of decision-making difficulty. 

The subject will be asked to solve two mazes in 
sequence, both of which (unknown to the subject) are 
identical, except that the first has no choice points (added 
walls remove all choices). This in turn will permit 
calibrating the effects of priming, giving an indication of 
the status of memory. The comparison of these two tasks – 
with identical motor demands and identical solutions – 
enables using the subject as their own control, and using 
difference scores from the first to second maze will help 
parse out potential confounding factors (e.g., fatigue, 
depression). These ideas are just the beginning of what 
appears to be possible with an appropriately designed maze 
and the data made available with the digital pen. 

Larger Implications 

Insights about Cognition 
 One interesting consequence of the detailed data we 

have is the light it may shed on some previously unknown 
(or at least under-appreciated) behavioral phenomena that 
opens up a new approach to understanding cognition. One 
of these is a phenomenon we call “hooklets.” Fig. 5 below 
shows a zoomed-in view of an 11, showing that there is a 
hook at the bottom of the first “1” that heads off in the 
direction of the beginning of the next stroke. While 
sometimes visible on paper, hooklets are often less than 
0.5mm long, not visible on the paper, yet are clear in the 
digital record and are detected automatically by our 
program. 
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We have hypothesized (Lamar 2011) (Penney et al. 
2013a) that hooklets represent anticipation: the subject is 
thinking about the next stroke and begins moving in that 
direction before finishing the current one. This is revealing, 
as the ability to think ahead is a sign of cognitive health: 
impaired cognition can limit capacity to multi-task, leaving 
resources sufficient only to attend to the current moment. If 
hooklets are indeed a sign of cognitive health, we have the 
intriguing possibility that their progressive disappearance 
may be a (perhaps early) sign of cognitive decline, as in 
pre-clinical Alzheimer’s. 

 
 
 
 
 

Figure 5: A hooklet 
 By focusing on the component processes of cognitive 
function applied to a standard task and moving away from 
a traditional approach based on outcome error, we open up 
the opportunity to study the subtle changes in cognitive 
health that herald cognitive change before problems 
manifest. Understanding cognitive strategies that emerge 
when individuals are consciously or unconsciously 
compensating for emerging impairment may enable the 
detection (and hence treatment) of medical conditions far 
earlier than currently possible, as well as assist with 
developing new treatments and monitoring their efficacy. 
Potential implications of earlier detection and treatment are 
evident even when applied to just one disease, Alzheimer’s 
dementia. An estimated 5.4 million Americans had 
Alzheimer’s disease in 2012, this number is estimated to 
rise to 6.7 million by 2030 and projected to reach 11-16 
million by 2050 if no medical developments alter the 
disease process. Healthcare costs for 2012 are estimated at 
$200 billion and are projected to rise to a staggering $1.1 
trillion in 2050 (Alzheimer’s 2012). The additional human 
costs of care-giving, including lost quality of life and 
suffering, are immeasurable. Early detection of this disease 
at a stage that afforded intervention while it was still 
preclinical or presymptomatic could thus result in 
substantial benefits. 

Insights about Assessment 
Current practice in cognitive assessment typically (and 
unsurprisingly) assumes that average test scores indicate 
absence of impairment. We suggest otherwise. We believe 
that patients often unwittingly hide early, and thus subtle, 
impairment behind compensatory strategies, for example 
thinking harder or working longer in ways that are 
typically not visible to an observer. Their final results may 
appear normal (e.g., a clock drawing that looks normal), 

but an ability to “see through” compensatory strategies 
would detect the additional mental work and the brief but 
important additional time spent on a task. 

We hypothesize that this can be done by detecting and 
measuring extremely subtle behaviors produced without 
conscious effort, as, for example the brief, inadvertent 
pauses in a task, or the seemingly accidental pen strokes 
(both noted above), that are normally overlooked or 
considered spurious and ignored. Detecting and measuring 
these subtle behaviors reveals the effort normally 
camouflaged by compensatory strategies (Penney et al. 
2014). 

We believe this approach to assessment will make 
possible considerably more detailed information about the 
cognitive status of an individual, with significant 
implications for diagnosis and treatment. 

Related Work 
Over its long history numerous scoring systems have been 
proposed for the CDT (see, e.g., (Strauss 2006)), but as 
noted above they may present difficulties by relying on 
vaguely worded scoring criteria (producing concerns about 
reliability) or by requiring labor-intensive measurements. 

Recent work on automating the clock drawing test is 
reported in (Kim 2013), where it was administered on and 
analyzed on a tablet. That work focused on interface 
design, seeking to ensure that the system was usable by 
both subjects and clinicians. It makes some basic use of the 
timing information available from the tablet, does basic 
digit recognition and some analysis of patient performance, 
but is unclear on how much of the patient performance 
analysis was done by the system vs. by the clinician. It 
does not report dealing with the complexities of the sort 
noted above, like over-written and crossed out digits, and 
appears reliant on traditional scoring metrics.. 

Work in (Sonntag 2013) reports on another medical 
application of the Anoto pen, employing it to annotate 
medical documents in ways well suited to a pen-based 
interaction (e.g., free-form sketching). The resulting 
system offers the ease and familiarity of recording 
information by writing, with the added ability to analyze 
the annotations and hence integrate them into the medical 
record. 

Work in (Tiplady 2003) reported using the Anoto pen in 
attempting to calibrate the effects of ethanol on motor 
control (i.e., detecting impaired drivers), by having 
subjects draw small squares as quickly as possible, a very 
limited experiment but one that attempted to use data from 
the pen to detect impaired behavior. 

Adapx Inc. developed prototype pen-enabled versions of 
several standard neuropsychological tests, including trail-
making, symbol-digit, and Reys-Osterreith complex figure. 
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Each of these demonstrated the ability to collect digitized 
data, but did not do data analysis (Salzman 2010). 

Summary 
The Digital Clock Drawing Test has demonstrated how the 
original conception and spirit of the clock drawing test can 
be brought into the digital world, preserving the value and 
diagnostic information of the original, while 
simultaneously opening up remarkable new avenues of 
exploration. We believe the work reported here takes an 
important step toward a new approach to cognitive 
assessment, founded on the realization that we no longer 
have to wait until people look impaired to detect genuine 
impairment. This offers enormous promise for early 
differential diagnosis, with clear consequences for both 
research and treatment. 
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