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Abstract

We investigate machine learning methods for diagnos-
tic screening of heart disease. Coronary heart disease
is the leading cause of death in the US, causing more
deaths than all types of cancers combined. Early diag-
nosis of heart disease in women is harder than it is in
men and typically requires the administration of sev-
eral clinical tests on the patient. Most risk stratification
methods aggregate the results of such tests, including
the risky, invasive procedures that cannot be adminis-
tered on all patients. In this paper, our goal is to identify
patients who are under high-risk of having heart disease
and related adverse events, using a minimal number of
diagnostic tests, especially less invasive ones. The low
frequency of patients with severe heart disease in the
dataset is challenging for most conventional machine
learning methods. To overcome this problem, we de-
velop and apply a cost-sensitive k nearest neighbor al-
gorithm. Our contributions are two fold: First, we com-
pare the predictive value of several diagnostic proce-
dures for heart disease, including electrocardiography,
angiography, radionuclide perfusion and conclude that
in womens heart disease, certain combinations of non-
invasive techniques are more predictive than some of
the widely used invasive procedures. Then, we evaluate
held out data and achieve an AUROC over 0.70, signi-
fying valuable clinical utility, using only the least costly
and least invasive tests.

Introduction
According to the heart disease and stroke statistics in the
US, annually one in every six deaths is caused by coronary
heart disease (CHD) (Lloyd-Jones et al. 2010). For women,
the mortality rate is even higher, approximately one in every
four women dies of the complications caused by coronary
heart disease (Stangl et al. 2008). Several diagnostic tests
exist to detect the disease, but yet, 64% of women die sud-
denly from an adverse event related to CHD, without show-
ing any symptoms of disease prior to the event (Lloyd-Jones
et al. 2010). Women who have symptoms such as chest pain
and angina, are referred to coronary angiography, an inva-
sive procedure that involves threading a catheter into heart,
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costing thousands of dollars per patient, yet half of them
don’t have heart disease (Davis et al. 1995).

In order to enhance the understanding of clinical presen-
tations of ischemic heart disease in women, WISE (Wom-
ens Ischemic Syndrome Evaluation) was initiated in 1996 as
a part of a National Heart, Lung and Blood Institute spon-
sored clinical trial (Bairey Merz et al. 1999). During this
study, 936 women with suspected ischemic heart disease un-
derwent various diagnostic tests and were followed-up at six
weeks and then annually to assess symptoms, hormonal sta-
tus and prognostic indicators of adverse events (Bairey Merz
et al. 1999).

The process of diagnosing heart disease is typically as fol-
lows: the simplest and least costly measurements are col-
lected from the patient with the suspected heart disease,
along with her treatment history and a questionnaire regard-
ing of her illness. The simplest baseline measurements can
be blood pressure taken from an arm cuff, weight, height etc.
Patients who are suspected to have the disease are admin-
istered additional, more specialized tests, which are more
costly and possibly more invasive. The decision regarding
the next stage diagnostic testing is left to the patients health
care specialists judgment.

In this paper, we investigate the predictive value of diag-
nostic tests, focusing on the least costly and least invasive
ones, including different combination thereof in assessing
risk of the patients, in order to determine which sets of diag-
nostic tools are the most beneficial for female heart patients.
We show that conventional invasive and costly diagnostic
tests that have been useful in assessing risk in heart disease
in men, are not as effective in women, and the combination
of certain non-invasive tests can achieve a higher predictive
score. Our method is extremely successful in classifying pa-
tients under high risk of having an adverse event with the
least invasive and the least costly features when tested on
held-out data. With the addition of more costly, but still not
invasive diagnostic tests, we achieve an even higher AUROC
score, signifying valuable clinical utility. We compare our
method to the established risk stratification techniques in the
literature and show that our method is significantly more ef-
fective. Our results can have a large effect on health care,
reducing costs and limiting diagnostic hurdles that the pa-
tients may be reluctant to undertake.

Rest of the paper is organized as follows: First, we de-
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scribe related work, and then, we formalize the problem
from the machine learning perspective. After we describe
our approach, we present the results of our experiments,
comparing our method to the previous approaches. Lastly,
we conclude with possible future directions.

Related Work
Risk assessment for heart disease has been an ongoing re-
search topic for several years. The Framingham risk score
(FRS) is one of the most commonly used risk assessment
technique. As an input, FRS takes the simplest traditional
risk factors, such as age, smoking, and blood pressure and
outputs whether the patient is under low, intermediate or
high risk for up to 10 years, by scoring each risk factor
(Mieres et al. 2005). However, this metric is not sufficient
for an accurate risk stratification: it classifies more than 90%
of women as low risk, and among the remaining 10%, very
few patients under 70 are classified as high risk (Shaw, Bu-
giardini, and Merz 2009). Thus, American Heart Associa-
tion (AHA) recently defined a new concept of ideal car-
diovascular health based on good medical history, the ab-
sence of major CVD risk factors, the presence of ideal phys-
ical examination results, low 10-year risk scores and healthy
lifestyle habits (Mosca et al. 2011). Their risk classification
algorithm stratifies women into three risk groups: high-risk,
at-risk and optimal-risk. The details of this approach can be
found in (Mosca et al. 2011).

Recently machine-learning approaches have been applied
to clinical data to diagnose patients and classify them into
different risk groups. (Syed and Rubinfeld 2010) formalized
clinical risk stratification as anomaly detection problem and
applied Minimum Enclosing Ball (MEB) to identify patients
who are at an increased risk of adverse events. They applied
their method to the MERLIN trial data and to the National
Surgical Quality Improvements Program (NSQIP) data and
they were able to achieve an AUROC as high as 0.86 for
mortality (Syed and Rubinfeld 2010). However, this method
ignores the available label information, and it may not be
applicable to noisy datasets.

On the clinical datasets, traditional supervised classifica-
tion methods perform poorly due to class skew: high-risk pa-
tients (minority class) are generally much less frequent than
the low-risk patients (majority class). These algorithms fail
to classify instances belonging to minority class to their cor-
rect risk groups, since assigning every instance to the major-
ity class is more favorable when minimizing the loss func-
tion.

The imbalanced dataset problem has been tackled via data
renormalization and classifier modification. As an example
of the latter approach, cost-sensitive SVMs can be given,
where SVMs are modified by incorporating a cost-matrix
to the soft margin optimization problem to handle class im-
balance. (Lessmann 2004), (Akbani, Kwek, and Japkowicz
2004), (Visa 2005). Cost-sensitive learning acknowledges
that misclassification costs or feature acquisition costs are
not uniform. In the case of medical diagnosis, both types of
costs should be modeled: misclassifying disease as healthy
can be lethal, whereas a false positive prediction has less se-
vere consequences. Similarly using too many unnecessary

tests to diagnose a patient should be penalized as well, since
diagnostic tests can be costly, invasive and risky. However,
most prior work in cost-sensitive learning addresses misclas-
sification without considering attribute cost (Elkan 2001),
or addresses attribute costs without taking into account mis-
classification costs (Melville et al. 2005). Especially in med-
ical diagnosis two way cost-sensitive learning is fairly unex-
plored.

Different from the previous approaches, we are interested
in modeling the predictive value of the diagnostic tests, par-
ticularly in combination, while applying different penalties
to two different types of misclassifications to handle imbal-
ance. We apply our technique to the WISE dataset. This is a
novel class of applications of our method, which has impor-
tant value for systemizing the diagnostic heart disease tests
for women.

Problem Formulation
We formulate the problem as a binary classification prob-
lem. Given labeled training dataset D of n tuples, D =
{(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)} where xi ∈ Rp are
the feature vectors, our goal is to infer binary class labels
yi ∈ t1, t2.
K nearest neighbors (KNN) is the supervised learning
algorithm which classifies an instance based on the labels
of its k closest neighbors in the feature space. Neighbors
are found using a distance function, which is chosen based
on attribute types in the dataset. In this paper, we used a
distance measure appropriate for mixed typed attributes.
Given Q as the set of quantitative features and C as the set of
categorical features, let Lc be an M ×M symmetric matrix
describing the distance between two categorical variables.
Using squared distance for quantitative variables, we can
calculate the distance between two feature vectors with the
following equation:

d(xi, xj) =
∑
q∈Q

(xiq − xjq)
2 +

∑
c∈C

Lc(xic, xjc) (1)

Let Ni be the set of K nearest neighbors for a test instance
xi based on the distance measure d. Using a majority voting
scheme, let Vi(t) be the total votes of neighbors of xi with
the label t. More formally,

Vi(t) =
∑

k ∈ Ni(I(t, yk)) (2)

where I is an indicator function, that is I(t, yk) = 1 if t = yk,
0 otherwise. A refinement is to perform similarity-weighted
voting. Let T the target space, that is T = {t1, t2}, then pre-
dicted target variable of xi is: ŷi = argmaxt∈TVi(t)

In the case of imbalanced datasets, instances of the ma-
jority class dominate the neighborhood; hence the majority
vote tends to be the majority class label in most cases. In the
cost-sensitive KNN (C-KNN), the class imbalance problem
can be addressed with class-based weighting of the votes.
Let be w = {wt1 , wt2} be the weight vector corresponding
to the class labels t1 , t2. The new weighted majority-voting
scheme is:

ŷi = argmaxt∈TwtVi(t) (3)
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With this new weighted majority voting scheme, majority
class votes can be penalized by applying lower weights than
the minority class votes. Hence, even when the minority
class instances are a minority in the k-neighborhood, their
presence are amplified by using higher weights.

Data
In the WISE study, female participants who were undergo-
ing coronary angiogram for chest pain or suspected myocar-
dial ischemia, had been assigned further diagnostic testing
to understand the clinical representation of coronary artery
disease (Bairey Merz et al. 1999). Diagnostic tests can be
divided into two groups: invasive and non-invasive tests.
Procedures performed without the insertion of needle, in-
struments or fluids into the body can be considered non-
invasive. Invasive procedures range from blood tests (as it
involves needles) to surgeries. At the start of the clinical
trial, prior to diagnostic testing, baseline evaluation data is
collected from the patients. This data included demographic,
clinical, angiographic information and Duke Activity Status
Index questionnaire inquiring about patients activity levels
(Bairey Merz et al. 1999). Their physical symptoms such
as the location and severity of pain, was also included in
the baseline evaluation (Bairey Merz et al. 1999). Patients
were contacted at six weeks periods, and then annually to
collect further information regarding their symptom status,
hormonal status and adverse event encounter (Bairey Merz
et al. 1999). After baseline evaluation, patients underwent
several diagnostic tests such as electrocardiogram (ECG),
Dobutamine stress tests (DS), pharmacologic stress tests
without Dobutamine (PS), angiogram (AN), exercise stress
test (EX), radionuclide perfusion (PERF), brachial artery ul-
trasound (MD). Among these tests, ECG, EX, and MD are
non-invasive, and DS, PS, PERF and AN are invasive with
ECG being the least invasive and the least expensive test.
However, even though it is a costly and invasive procedure,
angiogram is seen as the gold standard test for the diagnosis
of heart disease.

Preprocessing
Missing value imputation Missing values in clinical tri-
als is a serious problem for analysis and interpretation of
data. In this paper, missing values are first imputed by mean
value imputation, and then their final values are found by
training a linear regression estimator with ridge penalty on
the full attribute-patient value matrix.

Feature Selection Feature selection is performed firstly
on the initial dataset and then after each additional diag-
nostic test or tests. The chi-square test for independence is
chosen as the feature selection method. Prior to chi-square
testing, quantitative features are categorized using level bin-
ning. Features that have a p-value of less than 0.05 (p ≤
0.05) were kept in the dataset for classification.

Class Labels Patients are labeled based on the events they
had through out the study. We considered 4 different types
of adverse events: death, congestive heart failure (CHF),
stroke, and myocardial infarction (MI).

Test Ordering
We evaluated the different combination of diagnostic test
in five stages. Stage 1 uses baseline evaluation features
which are augmented with follow up information. In stage
2, features from electrocardiogram (ECG) results are
combined with the baseline evaluation features. In stage
3, the three kinds of stress tests, exercise stress (EX),
Dobutamine stress (DS), and pharmacologic stress (PS) are
evaluated separately by combining the results of each test
to the feature set from stage 2. Feature set combinations
at this stage are therefore: Augmented baseline evaluation
(BE), ECG, DS; BE, ECG, PS; BE, ECG, EX. In stage 4,
we separately add angiogram (AN) and perfusion imaging
(PERF) results to each feature set from stage 3 obtaining
following feature sets: BE, ECG, DS, AN; BE, ECG,
PS, AN; BE, ECG, EX, AN; BE, ECG, DS, PERF; BE,
ECG, DS, AN; BE, ECG, EX, PERF. Perfusion imaging or
angiogram is usually next stage diagnostic tests after stress
testing so we evaluated both of them after stage 3. Finally,
in stage 5, we added the brachial artery testing results to
the previous feature set. Conventionally, brachial artery
ultrasound is usually performed after or during angiogram,
which is why it is the latest diagnostic test in the process.

Experiments
Among 936 patients, we removed the patients who passed
away or dropped out from the trial within the first 6 months
of their admission. Follow-up information of the remaining
638 patients is added to their baseline evaluation data, and
used as initial feature set. After the inclusion of each diag-
nostic test, we performed feature selection using chi-square
independence testing and standard normalization.

Metrics
Specificity measures the proportion of true negatives in the
dataset, whereas, sensitivity, also known as the recall rate,
measures the proportion of the true positives. Ideally a diag-
nostic test has sensitivity and specificity both close to 100%.
It can also be the case that a test has a low specificity and
high sensitivity or vice versa. In such cases, the choice of the
diagnostic test depends on other variables such as the cost of
the test or the seriousness of the condition (Pepe 2003). The
ROC curve is a plot of sensitivity against specificity of a
classifier, as its discrimination threshold is varied. In clin-
ical research, ROC curves are extensively used to evaluate
statistical models. Area under ROC curve provides a quanti-
tative measure for the performance of a diagnostic test (Pepe
2003). AUROC score of 0.5 denotes the random classifier,
and anything above 0.5 has a predictive value. In this pa-
per, we compared the discriminative value of the diagnos-
tic tests in terms of their specificity and sensitivity. We also
provided the AUROC for our approach and other benchmark
approaches for various diagnostic tests.

KNN Parameters
For kNN, the value of k and class voting weights are se-
lected empirically on the training set. We used the following
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Figure 1: Sensitivity comparison of diagnostic tests and their combinations for mortality prediction using C-KNN. Procedures are
ordered with respect to their stages, different colors represent different stages

formulation for class weights:

w0 = 1, w1 =

⌈
K

2

⌉
+ 1 (4)

where w0 is majority class weights (patients who didnt have
an event), and w1 is minority class weights (patients who
had an event). w0

w1
are estimated based on the n0

n1
where n0

and n1 are the number of negative and positive instances in
the training set respectively.

Results
Sensitivity of diagnostic procedures Using cost sensitive
KNN as the classifier we predicted mortality with the com-
bination of feature sets obtained from each stage. The sen-
sitivity for each combination of diagnostic tests is reported
in Figure 1. Different stages are denoted with different col-
ors. As can be seen from Figure 1, baseline evaluation with
brachial artery ultrasound performs the best in sensitivity;
demonstrating that rather than a combination of several diag-
nostic procedures, brachial artery ultrasound may be the best
diagnostic procedure to administer for patients with high
risk factors to identify whether they indeed have an heart
disease. A less costly option, dobutamine stress, is the next
best alternative, which is rightly used as initial diagnostic
procedure. For the general population performing more op-
erations does not significantly improve sensitivity, as differ-
ent tests may give contradictory results.

Performance of C-KNN AUROC of C-KNN for diagnos-
ing 4 different types of events, death, CHF, MI and stroke is
shown in Figure 2. For each of the cases, C-KNN performs
extremely well, having an AUROC above 0.65. Especially

Figure 2: AUROC of C-KNN

for mortality and congestive heart failure (CHF) prediction,
AUROC is above 0.7, which signifies a valuable clinical di-
agnostic utility.

Comparison with the baseline method We compared our
approach with the state-of-the-art risk classification algo-
rithm by the American Heart Association (AHA), to as-
sess how effective our approach in classifying women into
correct risk groups. To perform risk stratification with the
AHA’s algorithm, we first identified the variables that are
used by the algorithm in the WISE data. All of the variables
except for age, and whether the patient follows a healthy
diet, was present in the WISE data and are incorporated in
the risk calculation as described in (Mosca et al. 2011). Fol-
lowing (Mosca et al. 2011), Framingham score is calculated
based on the work by (D’Agostino et al. 2008). The defini-
tion from (Grundy et al. 2004) is used to calculate the pres-
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Figure 3: Survival curves after classification using AHA guide-
lines

Figure 4: Survival curves after classification with C-KNN

ence of metabolic syndrome. Next, we applied C-KNN on
the baseline evaluation data. Using C-KNN we partitioned
patients into high and low risk groups, based on whether
they had any CHD related adverse events. AHA’s risk cal-
culation algorithm identified only one optimal risk patient
among all WISE patients, hence all at-risk patients are com-
bined with optimal-risk patients to compare against high-
risk patients.

After classification with each method, to compare the
rates of having a cardiovascular related adverse event (death,
stroke, MI or CHF), we employed Kaplan-Meier survival
analysis (Kaplan and Meier 1958). Since Kaplan-Meier is
suitable for patient censoring, we used all available pa-
tient data, rather than removing patients who left or passed
away before the end of the clinical trial. We also calculated
the hazard ratios (HR) and p-values for each method. For
Kaplan-Meier survival analysis, HR and p-value estimation,
we used the MStat package (Drinkwater 2010).

The survival curves for C-KNN and AHA can be seen
in Figure 3 and Figure 4 respectively. Patients who left the
trial prior to the completion of the trial (censored patients)
are represented by ticks. Top (red) line corresponds to the
predicted lower-risk patients.

The hazard ratios and p-values for each method is shown
in Table 1. It can be seen from Table 1 that the classifications

Method HR P Value
AHA 1.284 0.0026

C-KNN 1.4 0.0002

Table 1: Hazard ratios and p-values for the predictions by AHA
and C-KNN respectively.

of both methods are correlated with the adverse event rates,
with a high statistical significance (p ≤ 0.05). Yet, C-KNN
clearly outperforms AHA: it has a lower p-value than AHA
and more importantly, it has a higher hazard ratio than
AHA. Additionally, Figure 3 and 4 show that towards the
end of the trial, low risk patients predicted by AHA have
actually lower survival rate than those under high risk. The
patients who are identified as low risk by C-KNN have
consistently higher survival rate than high risk patients.
This suggests that the current heart disease risk guidelines
may not be sufficient in the long run in classifying women
into the correct risk groups, whereas a machine learning
approach may be more reliable.

Comparison with MEB, SVC and LR We compared
our method with MEB, cost sensitive SVM (C-SVM) and
logistic regression (LR) and presented the best results for
all 4 approaches in Figure 5. To learn MEB, we used the
implementation provided by Kumar et al with epsilon value
of 0.5 (Kumar, Mitchell, and Yildirim 2003), following their
exact methodology.

In our experiments, we used the ratio of positive ex-
amples (patients who had an event) to the negative examples
(patients who did not have an event), for the costs of positive
class and negative class,. The events can be death, CHF, MI
or stroke. For C-SVM, we used the LibSVM implemen-
tation (Chang and Lin 2011), with linear kernel (since it
outperformed RBF and polynomial kernels). The reported
AUROC scores are averages for all test combinations. As
it can be seen from Figure 5, for all four types of events,
our approach significantly performs better than the previous
approaches and benchmark classifiers, logistic regression
and SVM. We predict mortality with an impressive AUROC
of 0.72.

Discussion and Conclusion
In this paper, we provided an effective approach for risk
stratification in heart disease and we investigated predictive
capabilities of the common diagnostic procedures. As a
risk stratification method, we proposed cost-sensitive KNN,
and applied it to a clinical trial dataset on womens heart
disease, a dataset that has previously not been analyzed
using machine-learning methods. Our method outperforms
previous comparable risk stratification methods for mor-
tality, CHF, Stroke and MI prediction. In this study, we
have achieved significant results: 1. We obtained over 0.72
AUROC score, which is a very significant achievement for
diagnosing heart disease in women. To our knowledge,
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Figure 5: AUROC comparison of C-KNN, C-SVM, MEB and LR
for classification in 4 different types of events

no other machine learning approach is as accurate for
diagnosing womens heart disease. 2. We showed that our
approach outperforms state-of-the-art, conventional risk
guidelines for CHD. Our results are statistically significant
(p < 0.0002) and as evident by the consistent adverse
event rates, our approach separates women into correct
risk groups. This suggests that our approach can apply to
a larger population as well. 3. We achieved high AUROC
scores using the least invasive, least costly and least risky
tests. For CHF, MI prediction, ECG and stress tests yield the
highest AUROC, and for stroke and mortality prediction,
same combination along with perfusion results, give the
highest AUROC. It is important to point out that none of
these combinations involve angiogram, an invasive, costly
procedure. 4. We challenged conventional procedures for
diagnosing heart disease, and showed that in terms of
predictive accuracy such procedures are unnecessary, and it
is possible to achieve comparable, even better results with
much less invasive diagnostic tests in the early stages. We
propose that for patients with high risk factors, it is more
rational to administer brachial artery ultrasound: It is not
invasive, or risky, yet it alone provides highest specificity.
Moreover, although ECG, exercise stress test and angiogram
combination define routine practice for screening heart dis-
ease, they are not as reliable for classifying the patients as
high risk, but are reliable for identifying low-risk patients.
In the future, we plan to investigate which tests are the best
for a specific patient.
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