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Abstract
In the field of probabilistic robotics, a central problem is
to determine a robot’s state given knowledge of a time
series of control commands and sensor readings. The
effects of control commands and the behavior of sen-
sor devices are both modeled probabilistically. A va-
riety of methods are available for deriving the robot’s
belief state, which is a probabilistic representation of
the robot’s true state (which cannot be directly known).
This paper presents a series of five weekly assign-
ments to teach this material at the advanced undergrad-
uate/graduate level. The theoretical aspect of the work
is reinforced by practical implementation exercises us-
ing ROS (Robot Operating System), and the Bilibot, an
educational robot platform.

Background
Over the last twenty years, probabilistic robotics has become
a dominant and successful theoretical framework for creat-
ing highly competent autonomous robotic systems (Thrun
2002; 2010). Based on (Thrun, Burgard, and Fox 2005), the
reference text in the field, we have developed a series of
assignments to introduce students robot localization using
probabilistic methods.

The paper briefly introduces the relevant theory, and then
presents our student assignments. Using ROS (Robot Op-
erating System, www.ros.org), students implement code
that controls a simulated robot in a virtual world. We in-
troduce noise in the simulated robot’s controls and sensors
that mirrors noise found in the real world. Our students
subsequently load their control programs onto the Bilibot
(bilibot.com), an educational robotics platform based
on the iRobot Create.

Introduction
The essential theory for probabilistic robotics is based on
hidden Markov models (HMMs). The robot’s true state X is
the hidden variable. For the localization problem of a ground
robot, the state may consist of just three components: its
(x, y) location in the world and its rotational orientation θ.

Influenced by the hidden state, sensor readings produce
probabilistic emissions Z. The robot’s current state plus a
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control U lead to its subsequent state, in a process that forms
a Markov chain.

Several approaches may be used to infer the hidden state
given the known controls issued to the robot and the known
observed sensor readings. The hidden state is represented as
a distribution of probabilities, referred to as a belief.

We have developed exercises that let students implement
two key methods: grid localization, in which the belief is
represented by a finite histogram of probabilities, and parti-
cle filters, in which a set of particles collectively represent
hypotheses of the state, and regions of high particle density
represent stronger beliefs of the state.

The Assignments
We have developed five assignments: (1) ROS Race, an in-
troduction to ROS by writing a simple reactive control pro-
gram for a simulated planar robot, (2) grid localization in
simulated 1-dimensional world, (3) particle filter localiza-
tion in the same 1-D world, (4) particle filter localization of
(x, y, θ) in a simulated planar world, and (5) particle filter
localization with a physical robot in an environment match-
ing the simulated planar world.

ROS Race
The first programming assignment in the course was de-
signed to get the students acquainted with ROS, which in-
cludes device drivers, libraries, visualization tools, and in-
tegrated simulation environments. A robot control program
written for ROS may control either a simulated robot in a
simulated world, or a real robot in the real world.

Students were given a race track in Stage (a planar sim-
ulated robot world) with a virtual Pioneer robot. Students
could access two ROS topics: a motor control topic and a
laser range-finder topic. Subscribing to the laser topic pro-
vided sensor data from the simulated robot, and publishing
to the motor topic moved the robot. Students were required
to design a reactive control program that would drive the
robot through the race track.

1-D Robot World
For the second and third programming assignments, students
were given a simulated 1-dimensional world (Figure 1) mod-
eled after material in (Thrun, Burgard, and Fox 2005). A
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robot that could travel only left and right was placed in a
corridor with three identical doors. Based on motion and a
door sensor, the goal was to localize within the corridor.

Because simulation in ROS does not directly introduce
real-world error, two nodes were written to add noise to the
simulation. A motor node sits between the students’ control
program and the underlying command-velocity node. This
node restricts movements to allow only horizontal move-
ment. Further, it adds noise to the students’ velocity com-
mand by selecting an actual velocity from a Gaussion distri-
bution centered at the requested velocity.

A “bad sensor” node was designed to give a binary output
(door, wall) based on the underlying simulated laser scan-
ner. Using a sum of a subset of laser scans, the node de-
termines the robot’s actual relationship to doors and walls.
Then the node adds randomness, as illustrated in Figure 2.

Figure 1: ROS Stage simulation showing robot at the left of
a one-dimension world. The robot moves horizontally along
the corridor, sensing either a wall or a door.

(a) (b) (c)

P (door) = 0.1 P (door) = 0.47 P (door) = 0.9

Figure 2: Probabilistic operation of the door sensor. When
robot is located at a wall (a), the sensor reports door with
probability 0.1. When located at the edge of a door (b), the
sensor reports door with probability 0.47. When located in
the middle of a door (c), the sensor reports door with prob-
ability 0.9.

1-D Grid Localization
Assignment 2 was designed around this 1-D world. The stu-
dents were to implement the Grid Localization algorithm
described on page 238 of (Thrun, Burgard, and Fox 2005).
They were instructed to move the robot at 4m/s and represent
the 60m-long corridor as 600 grid cells (each representing
10cm). In this case, the initial probability of each grid cell
is 1

600 , representing the robot’s initial belief state of maxi-
mum uncertainty. Figure 3 illustrates a student’s solution to
the grid localization assignment.

Figure 3: Student solution using grid-based localization. The
robot started at the left edge of the world and has traveled
into the first doorway. It has seen enough of the wall such
that the probability of it being located at the second doorway
is small. It is equally likely that the robot is located at the
first door or the third door. Courtesy Michael McGuinness.

1-D Particle Filter Localization
Particle Filter Localization (also known as Monte Carlo Lo-
calization) represents belief state using a particle distribu-
tion. PFL has similar properties to Grid Localization, but can
be made to run in real time for detailed multi-dimensional
worlds. In Assignment 3, students replaced their 1-D grid
localization code with PFL.

Planar Particle Filter Localizaton
For Assignment 4, we gave students a Stage-simulated pla-
nar world for robot localization. In implementing PFL, stu-
dents built beam models for the simulated laser, and devel-
oped low variance and effective particle sampling methods.

Real World Particle Filter Localization
In the final assignment, students were given a reference lo-
calization solution from Assignment 4, and tasked with run-
ning it on a physical Bilibot robot operating in an actual
corridor. This brought the theoretical localization techniques
into concrete practice.

Discussion
The ROS Race was successful in introducing students
to ROS. The subsequent assignments were all highly
programming-intensive, requiring students to devote signif-
icant time to be successful.

The assignments provided a strong basis for demonstrat-
ing the essential theory. Students confronted many consider-
ations necessary for creating effective practical solutions, in-
cluding choices regarding particle counts, resampling meth-
ods, and computational efficiency.

Most students worked diligently to create whole solutions
from relatively minimal starter code. Others found the de-
sign and coding challenge to be too steep. We will consider
providing partially working starter code in future semesters.
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