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Abstract

This paper suggests some teaching strategies for Algo-
rithms and AI courses. These courses can have a com-
mon goal of teaching complex problem-solving tech-
niques. Based on my experience teaching undergradu-
ates in a small liberal-arts college, the paper offers con-
crete ideas for working toward this goal. These ideas
are supported by relevant studies in cognitive science
and education. Together, they provide a plan for struc-
turing lessons and assignments to help student become
better problem-solvers.

Introduction
Computer science is a problem-solving discipline. Students
of computer science learn to solve problems that technology
creates and/or brings within our reach. Some courses in the
curriculum focus more on technologies, such as program-
ming languages and architectures, which have a naturally
high rate of change. Other courses focus more on problem-
solving, which is a relatively stable concept even in the face
of rapid technological change.

In this sense, courses like Algorithms and Artificial Intel-
ligence form the core of computer science. In the undergrad-
uate curriculum, the main role of these courses is to give stu-
dents a problem-solving toolbox. This is evident in the 2008
ACM report (ACM 2008). In the Algorithms section, the re-
port calls for “the ability to select algorithms appropriate to
particular purposes and to apply them” to problems. In the
Intelligent Systems section, it calls for the ability “to select
and implement a suitable AI method” for a problem.

Of course, there are other ways to view the role of AI in
computer science. It is a field with philosophical and creative
aspects as well as practical ones. However, in the context of
general undergraduate education, surely one worthy goal of
an AI course is to help students develop advanced problem-
solving skills.

This paper discusses pedagogical strategies with that goal
in mind. It suggests ways to structure lessons and assign-
ments with deliberate attention to the development of stu-
dent skills. I have used these strategies to teach undergradu-
ates in a small liberal-arts college.
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The practical realities of a small college pose several chal-
lenges for this type of project. One is that due to schedul-
ing limitations, I teach an AI course only infrequently. Most
of my examples are therefore from a more regularly-offered
Algorithms course. I make efforts to point out parallel ap-
plications in AI, and because these courses do have similar
roles, pedagogical ideas tend to transfer well between them.

Another challenge is that small class sizes make it imprac-
tical to conduct experiments with proper control groups and
statistical comparisons. My experiences can give me a sense
for what works, but this type of evidence is anecdotal. To
compensate, I turn to published studies in cognitive science
and education to provide more formal support for the ideas
in this paper.

Teaching to the Problem
Courses like Algorithms and AI are typically organized
around families of problem-solving techniques. Thus an Al-
gorithms course typically has units on divide-and-conquer,
greedy algorithms, etc. and an AI course typically has units
on heuristic search, classification algorithms, etc. Most text-
books are also organized this way (Cormen et al. 2001;
Russell and Norvig 2010). Few would argue against this
overall structure at the level of a course or a textbook.

However, there are some convincing arguments against
conducting lessons based on this structure. It is easy to imag-
ine such a lesson. The instructor introduces a technique,
shows how to solve a problem with it, and then asks students
to repeat the procedure on assignments and exams.

Note that this familiar approach teaches students to apply
and implement, but does not really teach them to select. It
tends to tell students in advance which technique they should
apply to a problem. These are extra cues they will not have
when they encounter problems “in the wild” later on.

The process of selecting a problem-solving technique can
be non-trivial. Michalewicz and Fogel (2004) provide a sur-
prising example using a geometry problem from a fifth-
grade math textbook. Taken out of the context of its chapter
and given to adults in mathematical fields, most took more
than an hour to identify the elementary methods required to
solve it. It seems that application skills do not necessarily
translate to selection skills. If a course does not demonstrate
selection and ask students to practice it, then it bypasses an
important aspect of problem-solving.
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Pedagogical Strategies
In my recent problem-solving courses, I have given more
attention to the selection process. The main idea of my ap-
proach is to reverse the lesson structure described above.

When I want to teach a new problem-solving technique,
I begin by introducing a motivating problem. A good prob-
lem for this purpose will be easily grasped, but not easily
solved by techniques that students already know, because
the first thing I do with this problem is ask the students to
try to solve it. During this process, we identify where the
old techniques fall short. Then I return to a more traditional
mode of instruction and introduce the new technique.

There are several goals to this approach. By starting with
problems, it gives students the experience of tackling them
without knowing in advance how they should be solved, and
it makes the new technique immediately necessary and use-
ful. By analyzing inadequate solutions, it demonstrates an
important part of the selection process: determining when a
technique is not ideal. By finishing with direct instruction,
it maintains a level of guidance that I think is important for
complex material.

Literature Support
My approach shares some common ground with a pedagog-
ical movement called constructivist or problem-based learn-
ing (Wilson 1998). This paradigm is based on the claim
that learning is constructed through experience, not acquired
through instruction. In its purest forms, constructivist learn-
ing advocates for minimal instructor roles in the learning
process. However, its critics point to evidence that some
students learn better from direct instruction (Kirschner,
Sweller, and Clark 2006). Since my approach retains an
element of direct instruction, it is more problem-first than
problem-based.

There is support for this strategy in cognitive and ed-
ucational research. For example, Schwartz et al. (2005)
conducted experiments with students who were studying
psychological experiments on human memory. They asked
some students to analyze and graph data to find patterns,
while other students instead wrote a summary of an exist-
ing analysis. Both groups then attended a lecture on this
material. They found that students who had done their own
analysis were more likely to make correct predictions about
new experiments. They also found that the lecture compo-
nent was a necessary condition for this result.

Similarly, and more closely applicable to computer sci-
ence, Schwartz and Martin (2004) conducted experiments in
the context of a statistics course. They asked some students
to invent their own procedure for solving a problem before
attending a lecture and seeing worked examples. Other stu-
dents received more traditional instruction, with lectures and
examples only. They found that students who had done the
invention activity were able to solve more varied problems
later. It did not matter if students invented correct procedures
during their activity; in fact, none of them did.

Examples
I have put the problem-first approach into practice in sev-
eral units of my Algorithms course. One example is the unit

on greedy algorithms. The motivating problem I have used
here is interval scheduling: given a set of intervals, each
with a start and finish time, select a maximal subset of non-
overlapping intervals (see Figure 1.)

This problem works well for several reasons. It is easy
to describe and comprehend, both mathematically and visu-
ally. Students intuitively suggest several greedy approaches,
which sets the stage well for explaining the concept of a
greedy algorithm. However, the approaches they suggest
tend not to be the optimal one, which provides opportunities
to analyze incorrect solutions, and makes clear the impor-
tance of doing so.

Students typically suggest the following heuristics: pre-
fer intervals that begin earliest, are the shortest, or have the
fewest conflicts. We construct counterexamples to show that
all three are incorrect; this is easy for the first two and rather
challenging for the last. Then either a student or I will sug-
gest the correct heuristic, which is to prefer intervals that end
earliest. We do a proof by induction to verify this solution. I
can then discuss the greedy problem-solving technique in a
more general sense.

In an AI course, a related approach could be taken in a unit
on Bayesian probability. A good motivating problem would
be a classic one on medical diagnosis: given the results of a
disease test, the accuracy of the test, and the frequency of the
disease, compute the probability that a patient actually has
the disease. Students familiar with simple probability could
suggest solutions, but would not be likely to arrive at the cor-
rect answer. Real or simulated data could be used to induce
dissonance, which could then motivate Bayes’ theorem and
the correct solution.

1. The problem 2. Student suggestions

A. Earliest start first?
B. Shortest length first?
C. Fewest conflicts first?

3. Counter-examples

A. B.

C.

4. The solution

Earliest end first!
Proof by induction.

5. The technique

Find a good heuristic.
Make greedy choices.

Figure 1: The interval-scheduling problem is to select a max-
imal set of non-overlapping intervals. This figure illustrates a
problem-first lesson plan for introducing greedy algorithms
using this problem.
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Teaching for Transfer
Some of the problem-solving techniques taught in Algo-
rithms and AI can be applied directly in many settings. Top-
ics like sorting and depth-first search are straightforward in
this way. Other techniques are more abstract: they provide a
framework for approaching problems, but they must be tai-
lored or adapted in some non-trivial way to be applied effec-
tively in each new setting.

Topics like dynamic programming and heuristic search
fall into this second category. A dynamic programming al-
gorithm solves subproblems in the right order so that their
solutions can be used in larger subproblems. Many problems
can be effectively approached this way, but the specifics will
differ in each case. Similarly, in heuristic search, a space is
explored according to a heuristic that needs to be specified
appropriately for a particular domain.

Particularly for this second category of techniques, in-
struction typically centers around examples. We demon-
strate how to apply a strategy to some problems, and then
ask students to apply it to others. Cognitively speaking, what
this requires is transfer of learning.

Transfer has recently become a popular topic in AI re-
search, so some of the ideas and terminology may be famil-
iar. When we ask students to apply an algorithm in a way that
is directly analogous to the examples they have seen, we are
asking for near transfer. However, when an algorithm must
be significantly adapted to a new problem, we may be asking
for far transfer. Analogical reasoning may be useful in this
case, but it will not be enough to solve the problem.

Research on mathematical problem-solving indicates that
transfer of learning does not come easily to students. Novick
and Holyoak (Novick and Holyoak 1991) found that it re-
quires three stages: noticing that an old problem is rele-
vant, determining its correspondence to the new problem,
and adapting the old solution procedure to the new problem.
Surprising numbers of students in their experiments strug-
gled with all three stages, even in near-transfer activities,
and even more so in far-transfer activities.

Using standardized tests, Novick and Holyoak found that
mathematical ability was a good predictor of transfer suc-
cess, but general analogical-reasoning ability was not. They
also found that completing a near-transfer activity success-
fully helped students develop a better mental model (or
schema) for the problem-solving technique, which in turn
improved their success rate on a far-transfer activity.

There are several important implications of experiments
like these. First, for many students, transfer is not something
we can take for granted. It is the main goal of most instruc-
tion, but it is by no means a guaranteed result. Second, trans-
fer can be improved through practice, which means that we
can consciously design our courses to promote it.

Pedagogical Strategies
In my recent problem-solving courses, I have given more at-
tention to practicing transfer. The main idea of my approach
is to plan a sequence of examples, starting with near transfer
and moving towards far transfer.

After showing students how to apply a new technique to
an initial problem, I go on to present a second problem. A

good problem for this purpose will be directly analogous to
the first one, or nearly so. I ask students to attempt the new
problem, and eventually we settle on a solution. Then I ask
students to compare the two problems - to explain their com-
mon elements and also their differences. Based on this anal-
ysis, we develop a better description of the problem-solving
technique. For more complex techniques, I repeat this pro-
cess with at least one more problem that lies further away
from the original.

There are several goals to this approach. By presenting a
sequence of problems, it gives students guided practice with
transfer. By comparing problems, it directs their attention
to the common principles of the problem-solving technique,
which presumably are the basis of a good schema. The mix
of active learning and direct instruction follows logically
from the previous section.

Literature Support
There is support for this strategy in cognitive and educa-
tional research. Gentner et al. (2003) conducted relevant ex-
periments in the context of teaching negotiation strategies
for conflict resolution. They gave all their subjects two ex-
amples to study, but one group was instructed to compare
them while another group was instructed to study them one
at a time. They found that the first group was more likely
to transfer their learning to later problems, and could also
articulate the key principles better.

One reason for this effect may be that comparisons help
people distinguish between the core elements of a solution
technique and the surface elements of a specific problem.
Quilici and Mayer (1996) investigated this possibility in the
context of teaching statistical tests. They gave one group of
subjects examples that used a similar cover story for prob-
lems that required different test procedures, while another
group received examples that used different stories. They
found that the first group was more likely to choose the cor-
rect procedure for later problems, and less likely to be dis-
tracted by surface similarities between problems.

Another important effect may be to help students con-
struct internal explanations of problems and techniques.
Chi and Bassok (1989) confirmed the importance of self-
explanations through their experiments with students in a
physics course. They interviewed students while they stud-
ied mechanics examples and tried to solve related problems,
and found that problem-solving success was correlated with
good self-explanations of examples. Simply providing good
explanations to the students did not have the same effect;
they needed to construct their own.

Examples
I have put the problem-comparison approach into practice in
several units of my Algorithms course. For example, in the
unit on dynamic programming, I use a sequence based on
the knapsack problem. This problem works well because it
has many potential cover stories and two different structural
variants (see Figure 2).

The standard form of the problem is to put objects in a
knapsack, with the goal of maximizing the knapsack’s to-
tal value within a weight limit. Objects can be available ei-
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Initial  problem

Obj
1

Obj
2

Obj
n…

Weight 
limit

Maximal
value

Direct analogue

Quest 1 Quest 2 Quest n…

Time 
limit

Maximal
reward

Farther transfer

Coin 1 Coin 2 Coin n…

Exact change

Alternate structure

Obj
1

Obj
2

Obj
n…

Weight 
limit

Maximal
value

Figure 2: The knapsack problem is to put objects into a sack, maximizing total value within a weight limit. This figure illustrates
related problems that provide transfer opportunities from the knapsack problem.

ther with or without replacement, which produces the two
structural variants. Dynamic programming can be used to
solve both variants, but the solutions have non-trivial differ-
ences. (The former works with one dimension of subprob-
lems while the latter works with two.)

One direct analogue of the knapsack problem is the video-
game problem, in which one maximizes total quest rewards
within a time limit. A little further away is the coin-changing
problem, in which one makes a certain amount of change
using as few coins as possible. Both of these examples have
the same two variants, based on whether quests and coins
are available in unlimited quantities.

These examples can be used to practice transfer in two di-
rections: between cover stories and between structural vari-
ants. Comparisons across cover stories emphasize the impor-
tant properties of the knapsack-problem family, while com-
parisons across variants reveal the important characteristics
of dynamic programming solutions.

In an AI course, a related approach could be taken in a unit
on genetic algorithms. Like dynamic programming, genetic
algorithms can be applied to many problems, but effective
solutions may differ substantially from one problem to the
next. Students could practice specifying genetic represen-
tations, reproductive processes, and fitness functions for dif-
ferent domains. Comparisons across domains could give stu-
dents a stronger basis for designing new genetic algorithms
than any single example could provide.

Making Groups Work
After students have practiced problem-solving in a guided
setting, the logical next step is independent practice, through
problem sets or programming assignments. An important
decision here is whether homework should be truly indepen-
dent, or whether students should be allowed to collaborate.

I believe that doing some work independently is important,
but I support some forms of collaboration for particularly
challenging assignments.

Multiple studies have suggested that cooperative learning
can increase individual achievement (Johnson, Johnson, and
Smith JulyAugust 1998). Within groups, students can learn
from each other, and they may be forced to explain and mon-
itor themselves to a greater degree than they would be oth-
erwise. Groups also tend to perform at a higher level than
individuals (Heller and Hollabaugh 1992) and can therefore
be given more challenging assignments.

However, it is clear that student collaboration also in-
volves potential risks. A student may dominate the group
and do the majority of the work, thereby short-changing the
others. Alternatively, a student may fail to contribute suffi-
ciently, leaving the majority of the work to others. In a more
fair but still undesirable scenario, groups charged with work-
ing together can instead decide to split up the work.

All of these situations can mean that some students learn
less from homework than was intended. They can also make
it difficult to grade students fairly. Instructors are faced with
deciding whether the benefits are worth the risks.

Pedagogical Strategies
In my recent courses, I have found two models for group
work that have potential for achieving some of the benefits
while avoiding many of the risks. They both provide stu-
dents with specific guidelines for collaboration and include
elements of individual responsibility. I believe these proper-
ties have been crucial to their success.

Pair programming is one form of group work that I have
used. Obviously, this model involves two students working
together on a programming project. The students are given
two specific roles to play: driver and navigator. The driver is
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the one at the keyboard typing code, but the navigator is also
actively involved - making suggestions, catching mistakes,
and looking up information. Furthermore, the students are
required to switch back and forth between these roles fre-
quently.

For assignments that involve paper-based problem-
solving rather than programming, I have used a different
form of group work that I call design sessions. I present a
problem in class and ask students to design a general solu-
tion approach. They do so in groups of three, which are com-
posed differently every time. I check that groups are on the
right track in a brief discussion with the class as a whole.
Throughout this in-class session, students may only write
high-level conceptual notes to themselves. For homework, I
have them write up detailed solutions individually.

Although they differ in their details, these models have
similar goals. By establishing an official collaboration, they
aim to allow students to take on challenging tasks and learn
from each other. By providing a high degree of structure
and specific individual expectations, they try to help students
avoid developing counterproductive habits.

Literature Support

Pair programming is an idea that originated in industry as
the central practice of agile software development. In that
setting, there is evidence that it can lead to better software
design and fewer defects (Cockburn and Williams 2000).
Over the past decade, pair programming has also gained ad-
vocates in educational settings. It has been used most fre-
quently in introductory courses, where there is evidence that
it can produce better programs and boost retention rates in
the major (McDowell et al. 2006).

Pair programming has not been shown to have any re-
liable effects on individual exam scores in introductory
courses (Brereton, Turner, and Kaur 2009). However, it is
unclear to what degree the exams in these studies empha-
sized problem-solving tasks, as opposed to basic recall and
application tasks. It is also unclear whether results in intro-
ductory courses will translate to more advanced ones like
Algorithms and AI. There is room for more research to eval-
uate the effects of pair programming in these contexts.

Design sessions are largely my own invention, but they
have elements in common with an activity called think-pair-
share, an active-learning technique designed to increase stu-
dent engagement in lectures (Lyman 1981). In think-pair-
share, students are asked to consider a question individually
and discuss it in pairs, and then some pairs are asked to share
their thoughts with the class.

Design sessions could be considered an adaptation of this
technique for complex problem-solving. There is support for
using a group size of three: two students can be too few to
generate ideas in the face of a complex problem, and more
than three can be too many to allow everyone to partici-
pate (Heller and Hollabaugh 1992). The individual writeups
are intended to ensure that all students fully engage with the
problem, even though high-ability students are likely to take
the lead during the in-class sessions.

Examples
I have used pair programming in a recent Software Devel-
opment course, and I have used design sessions in a recent
Algorithms course. Both were quite popular among the stu-
dents; in both courses, students have made unsolicited com-
ments expressing their enjoyment of these activities. My in-
formal evaluation of the experience was that students sought
my help less frequently, and submitted better work than I
would have normally expected, given the challenging nature
of the assignments.

I have learned two main guidelines for applying these ac-
tivities effectively. First, it is important to use them only for
tasks that are sufficiently challenging. For simpler assign-
ments, students may not need to take the activity (and its
rules) seriously. Second, it is important to describe the rules
clearly to students, emphasizing the key features of the ac-
tivities and explaining their purpose. Strict enforcement of
the rules is rarely possible, but compliance is more likely
when students fully understand the expectations.

Pair programming is clearly more applicable to
programming-intensive courses like Software Develop-
ment, while design sessions apply better to courses like
Algorithms that involve more traditional problem-solving.
AI courses are among the few that could naturally make
use of both. Topics in the AI course are typically a mixture
of abstract problem-solving and concrete implementation.
Both of these models for student collaboration could
therefore be applicable.

Last Day of Class
The final lesson of a course may be spent in a rush to fin-
ish material and complete administrative tasks. Or perhaps
it includes a summary lecture, tying together all the course
units into a coherent whole, or an inspirational speech about
the future of the field. All of these are worthy activities, but
I have one final suggestion for making the most of the last
day of class.

In my recent problem-solving courses, I have made time
for the class to discuss some particularly realistic problems
on the last day. Good problems for this purpose are not rec-
ognizably attached to any particular unit, and may not be
perfectly solvable by any single technique. Ideally, they are
real problems with some impact on the students’ world.

I ask students to consider these problems in the context of
the entire course. We list the types of techniques they have
learned, discuss how they might apply, and sketch potential
approaches. In essence, this is a large-scale selection activ-
ity, with motivations derived from the first section of this
paper. It is also an engaging way to summarize a course.

Each year at my university, hundreds of first-year students
are asked to identify and rank their top three choices of first-
year seminars. They are then assigned into sections, taking
these preferences into account as much as possible within
capacity restrictions of the sections. I present this problem at
the end of my Algorithms course, and it allows us to touch
on nearly every unit in the course. By the end, we design sev-
eral reasonable approaches using backtracking, local search,
and network flow.
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Conclusions
This paper discusses teaching in Algorithms and AI courses
from the perspective of making students better problem-
solvers. It makes concrete pedagogical suggestions for struc-
turing lessons and assignments to focus on developing stu-
dent skills. These suggestions spring from my own experi-
ence, but they are supported by studies in cognitive science
and education.

I have proposed four strategies that fit together into an
overall plan. The first is to introduce students to a problem
before presenting its solution technique. The second is to
help students practice performing transfer to similar prob-
lems. The third is to provide effective frameworks for stu-
dent collaboration in challenging assignments. The fourth is
to use real-world problems as summary activities.

Because these strategies operate at the level of individ-
ual lessons and assignments, they are applicable without
any major course restructuring. They are not difficult to
implement, though the active-learning elements do take up
more class time than the traditional lecture-based approach.
They are no doubt easiest to implement in small classes, but
should not be impossible in large ones.

There is not yet a large body of research on teaching in
courses like Algorithms and AI. Most educational research
in computer science focuses on introductory programming.
However, insights from other problem-solving disciplines
can offer useful information. It is my hope that research
specific to teaching upper-level computer science will be a
growing area in the future.
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