
An Undergraduate Course in the Intersection
of Computer Science and Economics

Vincent Conitzer
Duke Unversity

Durham, NC 27708, USA
conitzer@cs.duke.edu

Abstract

In recent years, major research advances have taken
place in the intersection of computer science and eco-
nomics, but this material has so far been taught primar-
ily at the graduate level. This paper describes a novel
semester-long undergraduate-level course in the inter-
section of computer science and economics at Duke
University, titled “CPS 173: Computational Microeco-
nomics.”

Introduction
In recent years, major research advances have taken place
in the intersection of computer science (especially AI and
theory) and economics (especially microeconomic theory).
There are multiple motivations for these lines of work. On
the one hand, as computer systems become increasingly in-
terconnected, their users end up competing for scarce re-
sources, necessarily introducing economic phenomena. On
the other hand, advances in computing have made the use
of various novel economic mechanisms possible. The mul-
tiagent systems community has played a prominent role in
these developments, as it seeks to employ techniques from
economics in the design of multiagent systems, as well as
to contribute to the design of new economic systems by ex-
porting techniques from AI and multiagent systems.

In this interdisciplinary research area, much of the focus
has been on game theory—the theory of how to act ratio-
nally/strategically in environments with other players who
strategically pursue their own objectives—and the closely
related theory of mechanism design, which concerns the de-
sign of systems that result in good outcomes when used by
such strategic agents. Example applications of the former
include building good computer players for games such as
poker (Sandholm 2010), but also the high-stakes “games”
of strategically deploying security resources in ports and air
travel, for which algorithms for computing game-theoretic
solutions are now used in practice (Jain et al. 2010; An et
al. 2011; Shieh et al. 2012). Example applications of the lat-
ter include the design of combinatorial auctions (Cramton,
Shoham, and Steinberg 2006), which sell multiple interre-
lated items at once (for example, spectrum auctions), and

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sponsored search auctions (Lahaie et al. 2007), the auctions
used by major search engines to sell advertising space next
to their search results. Several articles on these topics that
are accessible to a general computer science audience have
recently appeared in the Communications of the ACM (Var-
ian 2008; Shoham 2008; Conitzer 2010).

Various advanced graduate courses have been taught by
the researchers in this area. In this paper, I argue that some
of this research has become mature enough to teach to un-
dergraduate students in a regular course. Specifically, this
paper describes a novel undergraduate course that has now
been taught twice (first as a “topics” course in Fall 2007, and
then as a regular course in Spring 2010) at Duke University.1

The rest of this paper is organized as follows. We first
discuss the main challenges faced in making the course ac-
cessible to students from a variety of backgrounds, and how
these were addressed by focusing on using the GNU Math-
Prog language to model problems as linear and integer pro-
grams. We then discuss the organization of the course, the
material covered in it, and which computational problems
this material raises that can be solved using linear and inte-
ger programming techniques. We proceed to discuss student
evaluations of the course. We conclude with some discussion
of the role of the course in the computer science curriculum.

Making the course accessible to students from
different backgrounds

Before discussing the details of the material taught in the
course, it is useful to discuss the key difficulty that had to
be addressed in designing this course. An important goal of
the course is to bring together students from computer sci-
ence, economics, and other backgrounds.2 This poses a ma-
jor challenge for the programming assignments: they need
to simultaneously

1I am currently (Spring 2012) teaching this course for
the third time; evaluations for this iteration are not yet
available. The most closely related undergraduate course
of which I am aware is David Parkes’ “Economics and
Computation” course taught at Harvard in Fall 2011
(http://www.seas.harvard.edu/courses/cs186/).

2Commonly listed fields for registered students include Eco-
nomics (18); Computer Science (13); Mathematics (6); and Elec-
trical and Computer Engineering (5).

Proceedings of the Third AAAI Symposium on Educational Advances in Artificial Intelligence

2357

1. be accessible to students with little or no previous pro-
gramming experience,

2. sufficiently challenge students who do have previous pro-
gramming experience, and

3. cover key computational problems across the different
topics in the course.

This combination of requirements would probably con-
stitute an overconstrained system for many courses, but it
turns out that for this course, there is in fact a solution.
This solution is based on the insight that many of the rel-
evant problems are naturally modeled as linear programs or
(mixed) integer linear programs. These techniques are now
used by many AI researchers, and in a few cases taught in AI
courses. The rest of this section discusses the use of linear
and (mixed) integer linear programs in this course in more
detail.

Linear and integer programs
A linear program consists of a set of linear inequalities over
a set of variables, together with a linear objective to be max-
imized (or minimized). In an integer linear program (resp.,
mixed integer linear program), all (resp., some) of these vari-
ables are not allowed to take fractional values. We will see
an example shortly. Linear programs can be solved to op-
timality in polynomial time (Khachiyan 1979); (mixed) in-
teger linear programs are NP-hard to solve, but in practice
can often be solved reasonably fast using various techniques
such as branch-and-bound search, cutting planes, etc. For
more detail on the theory of linear and integer programs
(and how to solve them), see, for example, (Vanderbei 2008;
Nemhauser and Wolsey 1999).

Due to the broad applicability of linear and integer pro-
grams, various solvers are available. In this course, we use
the GNU Linear Programming Kit (GLPK), primarily for its
open-source nature. It is available at

http://www.gnu.org/s/glpk/

It is not the most powerful solver, and for student projects
sometimes another solver is needed to scale; however, be-
sides that, the solver is adequate, and it is not at all difficult
to switch to using another solver.

In addition, special modeling languages are available.
These modeling languages allow one to specify the linear
or (mixed) integer linear program “in the abstract,” and it
can then be solved once concrete values for the parameters
of the problem are specified. The modeling language associ-
ated with the GNU Linear Programming Kit is called Math-
Prog; it is a subset of the AMPL language.

Let us now discuss an example.

Example problem in MathProg
The following problem instance of the knapsack variety il-
lustrates the relevant concepts. (This problem instance is
also discussed in the course.) Suppose we are in a room full
of precious objects. We want to maximize the total value of
the objects that we take out of the room. We can carry at
most 30 kilograms out of the room, and we can also carry at
most 20 liters out of the room.

• There are 3 units of object A available, each of which
weighs 16kg, takes up 3 liters of volume, and is worth
$11.

• There are 4 units of object B available, each of which
weighs 4kg, takes up 4 liters of volume, and is worth $4.

• There is 1 unit of object C available, which weighs 6kg,
takes up 3 liters of volume, and is worth $9.
This problem instance is naturally expressed by the fol-

lowing integer program:

maximize 11x + 4y + 9z
subject to
x <= 3
y <= 4
z <= 1
16x + 4y + 6z <= 30
3x + 4y + 3z <= 20
x, y, z >=0, integer

Here, x, y, and z represent the numbers of units of objects A,
B, and C that are taken, respectively. If the word “integer”
were dropped, the result would be a linear program in which
we would be allowed to take fractions of objects with us.

A downside of the above way of writing the integer pro-
gram is that it is not very transparent how it should be
changed if the instance changes—for example, if one of the
parameters (such as the weights) changes, if a new object
is added, or a new type of capacity constraint in addition to
weight and volume is added (for example, the objects may
be noisy and we may have a constraint on the total noise gen-
erated by the objects we take with us, so that we can escape
undetected). In the MathProg language, we can represent the
problem in the abstract first, and only then add the specific
data of the particular instance to be solved. To model the ex-
ample problem in the MathProg language, we first specify:

set OBJECT;
set CAPACITY_CONSTRAINT;

That is, we specify that there will be some set of objects and
some set of capacity constraints (such as weight and vol-
ume), but we do not (yet) specify what they are. Next, we
specify what types of parameters to expect:

param limit{j in CAPACITY_CONSTRAINT};
param availability{i in OBJECT};
param value{i in OBJECT};
param cost{i in OBJECT, j in
CAPACITY_CONSTRAINT};

These represent, respectively, the limit for each capacity
constraint (for example, how much total weight or volume
we can carry); how many of each object are available; how
valuable each object is; and how much each object con-
tributes to each capacity constraint (for example, how heavy
is object A, or how much volume does item B take up).

Next, we specify the variables of the problem, for whose
optimal values the solver will solve. For each object, there is
a variable indicating how many units of that object we take
with us.

var quantity{i in OBJECT}, integer, >= 0;

2358

Having defined the parameters and the variables of the
integer program, we can now define the objective and the
constraints. These are the same as those given above, except
they are now specified in the abstract. We wish to maximize
the total value of the objects that we take:

maximize total_value:
sum{i in OBJECT} quantity[i]*value[i];

There is a constraint that we cannot take more units of an
object than are available:

s.t. availability_constraints {i in
OBJECT}: quantity[i] <= availability[i];

Finally, we need to specify that we cannot exceed any ca-
pacity constraint.

s.t. capacity_constraints {j in
CAPACITY_CONSTRAINT}: sum{i in OBJECT}
cost[i,j]*quantity[i] <= limit[j];

Of course, a solver cannot solve the problem “in the ab-
stract”; we need to instantiate it with specific values. This is
done as follows (using the same values as above):

data;
set OBJECT := a b c;
set CAPACITY_CONSTRAINT := weight volume;
param cost: weight volume :=
a 16 3
b 4 4
c 6 3;
param limit:= weight 30 volume 20;
param availability:= a 3 b 4 c 1;
param value:= a 11 b 4 c 9;
end;

While this may seem more complicated than the original
way of writing the integer program, it is now much easier
to change the particulars of the instance: only the data after
data; needs to be changed.

Using MathProg for programming assignments
The course has two types of assignments: written assign-
ments, and “programming” assignments using MathProg.
(“Programming” is in quotation marks here because there
are many aspects of programming that are not captured in
MathProg modeling assignments; but, on the other hand,
there are quite a few aspects that are.) Doing all the pro-
gramming assignments in MathProg satisfies the three crite-
ria layed out before:

1. For a mathematically well-prepared student, it is feasible
to learn to do these assignments without any prior ex-
perience in programming. It should be pointed out that
students with prior programming experience do have a
significant advantage on these assignments; on the other
hand, the students without programming background of-
ten have significant economics background, giving them
a significant advantage on other assignments.

2. Students with previous programming experience—
notably, computer science students—are still challenged
by these assignments. This is in part because linear and

integer programs do not receive much attention in most
computer science curricula. Linear programs may be cov-
ered in algorithms courses; the techniques for solving
(mixed) integer programs have much in common with
techniques introduced in AI courses, but the connection is
usually not made. In any case, computer science students
tend to be unfamiliar with these modeling languages.

3. Many of the problems in the course can be tackled with
these techniques, as discussed in more detail below.

Course organization
This section concerns the organization of the course.

Basic aspects
Prerequisites. In order to accommodate a broad audience,
the course’s prerequisites have been kept to a minimum.
The main prerequisite is background in probability theory.

Materials. The book used for the course is Multiagent
Systems: Algorithmic, Game-Theoretic, and Logical
Foundations, by Shoham and Leyton-Brown (Shoham
and Leyton-Brown 2009). This book does a good job of
covering the topics in the course, with the exception of
some of the topics in Part 1 (see below). For those, separate
reading assignments are given. Many research papers are
also listed for optional reading, and various supplementary
materials are made available for Part 0 (see below). All the
slides for the course are publicly available on the course
website at http://www.cs.duke.edu/courses/spring10/cps173/

Grading and assignments. The course is graded as follows:
participation: 10%, programming assignments: 15%, written
assignments: 15%, midterm: 15%, small project: 20%, final
exam: 25%.

As the course progresses, the focus shifts from program-
ming assignments to written assignments. The motivation
for front-loading the programming assignments is two-fold:

1. Doing the programming assignments forces students to
think very precisely about how to formulate problems as
linear or integer programs, in particular about distinguish-
ing between parameters and variables, whether to sum
over a particular set or not, etc. After completing some of
these programming assignments, they are much less likely
to make conceptual mistakes on written assignments.

2. Especially for the students without programming back-
ground, it helps to have concrete experience using the op-
timization software before deciding on the projects they
do for the course. Also, if students choose to use the
GLPK software for their projects, then this will already
get them to use it on an ongoing basis later in the course,
lessening the benefit of making them do additional pro-
gramming assignments at that point in the course.

Projects may be undertaken in teams of one, two, or three
students. There are no hard requirements on the type of
project, other than that they be related to the course mate-
rial and, ideally, creative.

2359

Technical content
Apart from an introductory lecture that gives an overview
of the course, and a concluding lecture that discusses addi-
tional real-world applications, the course is organized into
four main parts.

Part 0: Basic techniques. This part introduces linear and
integer programming, focusing on getting students comfort-
able with the MathProg language and the GLPK solver. In
class, we cover examples such as the one given above, and
practice formulating various other problems (including the
popular Sudoku puzzle) as linear or integer programs, as
well as using GLPK to solve them. The students are also
given their first programming assignment, in which, among
other tasks, they must formulate a problem in the MathProg
language by themselves. An extremely brief overview of ba-
sic techniques from theoretical computer science, including
analyzing the runtime of algorithms and a basic introduction
to the complexity of computational problems, is also given
in this part of the course.

Part 1: Expressive marketplaces. This part introduces
several types of marketplaces from the recent research lit-
erature that require nontrivial computational problems to be
solved in order to run. The first example is that of a com-
binatorial auction, already mentioned in the introduction. In
a combinatorial auction, multiple items are simultaneously
for sale. A bidder can bid on individual items, but is also
able to bid on a bundle of items. For example, a bidder can
express: “I am willing to pay $500 for the desktop computer
and the monitor together, but individually they are worthless
to me.” Once the auctioneer has collected all the bids, she
faces a computationally hard winner determination prob-
lem (Lehmann, Müller, and Sandholm 2006): which bids
should she accept in order to maximize the total value of
the accepted bids, under the constraint that no item can be
allocated to two different bidders? This problem can be natu-
rally formulated as an integer program, as follows (in Math-
Prog). In this formulation, accepted[j] is 1 if bid j is
accepted, and 0 otherwise; contains[i,j] is 1 if bid j
includes item i, and 0 otherwise; and value[j] is simply
the value of bid j.

set BIDS;
set ITEMS;

var accepted{j in BIDS}, binary;
param contains{i in ITEMS, j in BIDS};
param value{j in BIDS};

maximize reward: sum{j in BIDS}
value[j]*accepted[j];

s.t. feasible{i in ITEMS}: sum{j in BIDS}
contains[i,j]*accepted[j] <= 1;

There are many variants of combinatorial auctions, such
as combinatorial reverse (procurement) auctions and com-
binatorial exchanges (Sandholm et al. 2002), as well as
combinatorial auctions that allow bidders to express their
bids in richer bidding languages (Boutilier and Hoos 2001;

Nisan 2006). To address these variants, various changes to
the above integer program formulation must be made, which
provides good interactive examples in class as well as tasks
for a programming assignment.

We also discuss the idea of expressive financial market-
places, in which complex securities can be traded (for ex-
ample, an option that pays out if the sum of two stocks’
values crosses a threshold). Here we face optimization prob-
lems similar to the winner determination problem discussed
above—for example, when such securities are offered to us
at various prices, which ones should we buy to maximize our
guaranteed profit? Again, this can be cast as an integer pro-
gram. This particular application tends to appeal to students
interested in careers in finance (often economics students).

We then discuss barter exchanges, in which goods are
traded without money changing hands. The main example
here is that of a kidney exchange. The idea of a kidney
exchange is as follows. Sometimes, a patient in need of a
kidney has a willing donor, but they are incompatible. In
this case, it may be possible to find another patient-donor
pair in the same situation, such that patient 1 is compatible
with donor 2 and patient 2 with donor 1, so that they can
swap. More complex arrangements are also possible (e.g., a
cycle of three patient-donor pairs). The basic optimization
problem here is as follows: given the compatibility relations
within a set of patient-donor pairs, find an arrangement that
results in as many patients receiving compatible kidneys as
possible. (Of course, a donor cannot be used unless the cor-
responding patient receives a kidney.) Integer program for-
mulations for this problem are discussed in a paper by Abra-
ham et al. (Abraham, Blum, and Sandholm 2007) that is on
the reading list for the course.

Finally, we cover a small amount of voting theory in the
course. Voting theory usually concerns the following set-
ting: there is a set of alternatives, and each voter ranks
these alternatives according to her preferences. Then, ac-
cording to some rule, a winning alternative is chosen—
or, more ambitiously, an aggregate ranking of all alterna-
tives is generated. The latter has applications outside vot-
ing proper: for example, consider executing the same query
on multiple search engines, and aggregating the results
into a single ranking. Of particular interest here is the Ke-
meny rule (Kemeny 1959), which minimizes the number
of disagreements between the aggregate ranking and the
input rankings. There are several important justifications
for using the Kemeny rule (Young and Levenglick 1978;
Young 1995), but unfortunately its outcomes are NP-hard
to compute even when only four rankings need to be aggre-
gated (Dwork et al. 2001). Nevertheless, an integer program
formulation can be quite effective (Conitzer, Davenport, and
Kalagnanam 2006).

Part 2: Game theory. In many of the applications in Part
1, the participants would benefit from thinking strategically
about what actions they take in the mechanism—for ex-
ample, what to bid in a combinatorial auction. This is es-
pecially tricky because what is optimal for one bidder to
bid can depend on what other bidders bid. Game theory
concerns exactly this question: what does it mean to act

2360

rationally/strategically in an environment with other ratio-
nal/strategic players? Game theory is the topic of Part 2 of
the course.

The main goal of this part of the course is to give stu-
dents a basic background in game theory, which is also
essential for understanding mechanism design in Part 3.
Part 2 covers standard concepts from game theory, includ-
ing representing games in normal and extensive form, as
well as solution concepts (i.e., definitions of what it means
to “solve” a game) such as (iterated) dominance, minimax
strategies, Nash equilibrium, subgame perfect Nash equi-
librium, Stackelberg strategies, etc. The presentation differs
from a standard game theory course in that (1) the focus is
on discrete models, and (2) for each solution concept we dis-
cuss how to compute solutions (which, in each case, can be
done using linear or mixed integer linear programs). These
computational problems are motivated by applications to
computer poker and the strategic allocation of security re-
sources, as discussed in the introduction.

Part 3: Mechanism design. Part 3 of the course concerns
mechanism design. This part draws on both Parts 1 and 2,
because it can be used to design the market mechanisms in
Part 1 in such a way that they work well when the partici-
pants act strategically according to concepts from game the-
ory, as explained in Part 2.

Part 3 starts by introducing Bayesian games, which can be
used to model settings in which a player may not know an-
other player’s preferences exactly. We return to the topic of
auctions (starting with single-item auctions), analyzing spe-
cific auction designs using the theory of Bayesian games. We
then turn to the general theory of mechanism design, intro-
ducing Vickrey-Clarke-Groves mechanisms (Vickrey 1961;
Clarke 1971; Groves 1973), which incentivize the partici-
pants to bid truthfully and which result in efficient alloca-
tions. To tie back into Part 1, we discuss in detail how these
mechanisms can be applied to combinatorial auctions. (In
the first, “topics” iteration of this course, we also managed
to cover automated mechanism design, in which the prob-
lem of finding an optimal mechanism is itself cast as a linear
or mixed integer program (Conitzer and Sandholm 2002); in
the second iteration of the course, unfortunately, there was
no time to cover this material.)

Course evaluation analysis
Below are the average scores on the student course evalua-
tion criteria that seem to be the most relevant for the purpose
of assessing whether the material covered is appropriate as a
regular undergraduate course. (Omitted are the criteria that
are more instructor-specific—with the exception of the over-
all instructor score—as well as progress criteria that were in-
dicated as being less relevant for this particular course). For
each criterion, the average score for the first, “topics” ver-
sion of the course is listed first, and the score for the second
version, with a regular course number, is listed second. The
department’s overall scores for the corresponding semesters
are reported in parentheses. All scores are out of 5.0.

• Overall: The quality of this course: 4.8, 4.2 (4.0, 4.1)

• Overall: The quality of the instruction (Inst. 1): 4.8, 4.6
(4.0, 4.0)

• Characteristics: Difficulty of the subject matter: 3.8, 3.4
(3.7, 3.8)

• Characteristics: Intellectual stimulation: 4.7, 4.4 (3.9,
4.1)

• Dynamics: Course requirements/expectations were clear:
4.6, 4.4 (4.1, 3.9)

• Dynamics: Methods of evaluating student work were fair
and appropriate: 4.8, 4.8 (4.1, 3.9)

• Progress: Understanding fundamental concepts and prin-
ciples: 4.8, 4.6 (4.1, 4.2)

• Progress: Learning to apply knowledge, concepts, princi-
ples, or theories to a specific situation or problem: 4.8,
4.8 (4.1, 4.2)

The course quality score especially dropped noticeably
upon moving from a “topics” course to a regular course.
While it is hard to establish conclusively what the causes of
this drop were, from the comments on the evaluation forms,
it does seem that the students had higher expectations the
second time. In particular, in the “comments” sections, stu-
dents made more suggestions the second time for how the
course could be improved. Notably, students with prior ex-
perience in game theory commented that it was good to take
a class on its integration with computer science, but sug-
gested shifting the focus further towards mechanism design
and applications, to increase complementarity with existing
courses in microeconomics that cover game theory.

Overall, though, the course evaluation scores seem to sup-
port the claim that the material is appropriate for a regular
undergraduate course.

Conclusion
I believe that this course has some potential to bring new
students into computer science and AI. A large number
of new undergraduate majors should not be expected from
it: as an advanced course, it tends to attract students in
later years of the program that have already chosen a ma-
jor. Also, of the students from other (non-CS) majors that
take the course, many (but not all) already have some back-
ground in computer science. On the other hand, anecdo-
tally, at least one of the course’s students from another
field (Economics+History) decided to take an introduction-
to-programming course in a later semester. It is also worth
noting that the course attracts mathematically talented stu-
dents who often have an interest in graduate school, which
may provide them with further opportunities to study com-
puter science and AI.

Overall, the course provides undergraduates a concrete
opportunity to apply computational thinking to another
field. In fact, in her seminal article on computational think-
ing (Wing 2006), Wing already notes the example of eco-
nomics, pointing out that “computational game theory is
changing the way economists think.” It is my hope that this
course not only proves that an undergraduate-level course in
the intersection of computer science and economics makes

2361

sense, but also provides guidance in the design of new under-
graduate courses in which computational thinking is applied
to other disciplines.

Acknowledgments
I gratefully acknowledge NSF Awards IIS-0812113, IIS-
0953756, and CCF-1101659, as well as an Alfred P. Sloan
fellowship, for support. I also thank my department and uni-
versity for supporting me in developing this course.

References
Abraham, D.; Blum, A.; and Sandholm, T. 2007. Clearing
algorithms for barter exchange markets: Enabling nation-
wide kidney exchanges. In Proceedings of the ACM Con-
ference on Electronic Commerce (EC), 295–304.

An, B.; Pita, J.; Shieh, E.; Tambe, M.; Kiekintveld, C.; and
Marecki, J. 2011. GUARDS and PROTECT: Next gener-
ation applications of security games. SIGecom Exchanges
10(1):31–34.

Boutilier, C., and Hoos, H. 2001. Bidding languages for
combinatorial auctions. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1211–1217.

Clarke, E. H. 1971. Multipart pricing of public goods. Pub-
lic Choice 11:17–33.

Conitzer, V., and Sandholm, T. 2002. Complexity of mecha-
nism design. In Proceedings of the 18th Annual Conference
on Uncertainty in Artificial Intelligence (UAI), 103–110.

Conitzer, V.; Davenport, A.; and Kalagnanam, J. 2006. Im-
proved bounds for computing Kemeny rankings. In Pro-
ceedings of the National Conference on Artificial Intelli-
gence (AAAI), 620–626.

Conitzer, V. 2010. Making decisions based on the pref-
erences of multiple agents. Communications of the ACM
53(3):84–94.

Cramton, P.; Shoham, Y.; and Steinberg, R. 2006. Combi-
natorial Auctions. MIT Press.

Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D. 2001.
Rank aggregation methods for the web. In Proceedings of
the 10th World Wide Web Conference, 613–622.

Groves, T. 1973. Incentives in teams. Econometrica 41:617–
631.

Jain, M.; Tsai, J.; Pita, J.; Kiekintveld, C.; Rathi, S.;
Ordóñez, F.; and Tambe, M. 2010. Software assistants for
randomized patrol planning for the LAX airport police and
the Federal Air Marshals Service. Interfaces 40(4):267–290.

Kemeny, J. 1959. Mathematics without numbers. Daedalus
88:575–591.

Khachiyan, L. 1979. A polynomial algorithm in linear pro-
gramming. Soviet Math. Doklady 20:191–194.

Lahaie, S.; Pennock, D. M.; Saberi, A.; and Vohra, R. V.
2007. Sponsored search auctions. In Nisan, N.; Roughgar-
den, T.; Tardos, E.; and Vazirani, V., eds., Algorithmic Game
Theory. Cambridge University Press. chapter 28.

Lehmann, D.; Müller, R.; and Sandholm, T. 2006. The
winner determination problem. In Cramton, P.; Shoham, Y.;
and Steinberg, R., eds., Combinatorial Auctions. MIT Press.
chapter 12, 297–317.

Nemhauser, G., and Wolsey, L. 1999. Integer and Combi-
natorial Optimization. John Wiley & Sons.

Nisan, N. 2006. Bidding languages for combinatorial auc-
tions. In Cramton, P.; Shoham, Y.; and Steinberg, R., eds.,
Combinatorial Auctions. MIT Press. chapter 9, 215–231.

Sandholm, T.; Suri, S.; Gilpin, A.; and Levine, D. 2002.
Winner determination in combinatorial auction generaliza-
tions. In Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), 69–
76.

Sandholm, T. 2010. The state of solving large incomplete-
information games, and application to poker. AI Magazine
31(4):13–32. Special Issue on Algorithmic Game Theory.

Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
Renzo, J.; Maule, B.; and Meyer, G. 2012. PROTECT: A
deployed game theoretic system to protect the ports of the
United States. In Proceedings of the Eleventh International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS).

Shoham, Y., and Leyton-Brown, K. 2009. Multiagent Sys-
tems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press.

Shoham, Y. 2008. Computer science and game theory. Com-
munications of the ACM 51(8):74–79.

Vanderbei, R. J. 2008. Linear Programming: Foundations
and Extensions. Springer, third edition.

Varian, H. R. 2008. Designing the perfect auction. Commu-
nications of the ACM 51(8):9–11.

Vickrey, W. 1961. Counterspeculation, auctions, and com-
petitive sealed tenders. Journal of Finance 16:8–37.

Wing, J. M. 2006. Computational thinking. Communica-
tions of the ACM 49(3):33–35.

Young, H. P., and Levenglick, A. 1978. A consistent ex-
tension of Condorcet’s election principle. SIAM Journal of
Applied Mathematics 35(2):285–300.

Young, H. P. 1995. Optimal voting rules. Journal of Eco-
nomic Perspectives 9(1):51–64.

2362

	AAAI12
	Contents
	Index
	Help
	Terms
	AAAI

