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Abstract

Recently, geospatial abduction was introduced by the
authors in (Shakarian, Subrahmanian, and Sapino 2010)
as a way to infer unobserved geographic phenomena
from a set of known observations and constraints be-
tween the two. In this paper, we introduce the SCARE-
S2 software tool which applies geospatial abduction
to the environment of Afghanistan. Unlike previous
work, where we looked for small weapon caches sup-
porting local attacks, here we look for insurgent high-
value targets (HVT’s), supporting insurgent operations
in two provinces. These HVT’s include the locations
of insurgent leaders and major supply depots. Apply-
ing this method of inference to Afghanistan introduces
several practical issues not addressed in previous work.
Namely, we are conducting inference in a much larger
area (24, 940 sq km as compared to 675 sq km in pre-
vious work), on more varied terrain, and must consider
the influence of many local tribes. We address all of
these problems and evaluate our software on 6 months
of real-world counter-insurgency data. We show that we
are able to abduce regions of a relatively small area (on
average, under 100 sq km and each containing, on aver-
age, 4.8 villages) that are more dense with HVT’s (35×
more than the overall area considered).

Introduction

Insurgents operating in Afghanistan require a substantial
command-and-control (C2) and logistics support to conduct
successful attacks.1 Military analysts refer to elements that
provide C2 and logistics support for large number of insur-
gent cells as “high-value targets” (“HVTs”) as the elimina-
tion of these HVTs can have a significant impact on insur-
gent operations. As a result, NATO and Afghan forces often
concentrate on finding these HVTs in an attempt to reduce
the level of violence in the country. The insurgents have a
limited number of these HVTs that are required to support
the activities of lower-level insurgent cells. Additionally,
terrain and cultural considerations place constraints on the
relationships between an HVT and the lower level insurgent
cell it supports. Knowing the locations of the lower-level
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1Note that throughout this paper, ’attack’ refers to an attack
conducted by the insurgents against coalition forces.

cells (based on attack data), as well as these constraints (ob-
tained from socio-cultural and terrain data), we wish to ab-
ductively infer where the HVTs can be found. This is clearly
an instance of a geospatial abduction problem originally in-
troduced by the authors in (Shakarian, Subrahmanian, and
Sapino 2010) and later extended in (Shakarian and Subrah-
manian 2010). We previously applied geospatial abduction
to find small weapons hide-sites related to local attacks in
Baghdad in (Shakarian, Subrahmanian, and Sapino 2009).
However, the environment of Afghanistan provides several
challenges that we did not address in the other work. These
include the following:

1. In Afghanistan, the influence of multiple tribes affect re-
lationships between areas on the ground. How do we ac-
count for this influence?

2. In the two provinces we considered in Afghanistan, the
terrain is extremely varied, unlike the more uniform urban
terrain of Baghdad. How do we account for this variance
in terrain?

3. Unlike our application to Baghdad (25 × 27 km area),
where we could easily discretize the space, our data-set
for Afghanistan includes two provinces covering a total
area 580 × 430 km, making discretizing of the space im-
practical. How do we best represent the space?

We note that using only attack data and socio-cultural infor-
mation alone will most likely be insufficient to pinpoint a
HVT. However, the real-world requirements imposed on the
insurgents by logistic and socio-cultural variables should al-
low a ground commander to significantly reduce the search-
space for such targets. Intelligence professionals identify
“Named Areas of Interest” or NAIs - regions on the ground
where they think HVTs can be located. Then, other intel-
ligence assets, such as unmanned aerial vehicles (UAVs) or
tactical human-intelligence (HUMINT) teams can be used
in the NAIs to pinpoint targets. (US Army 1994) In a large
area, such as a province of Afghanistan, UAVs or HUMINT
cannot be used effectively without first determining good
NAIs. To address this problem fir the specific case of
Afghanistan, we adapted the region-based abduction frame-
work of (Shakarian and Subrahmanian 2010) to our scenario
by creating an entirely new piece of software for abduc-
tive inference called the SCARE-S2 (Spatio-Cultural Ab-
ductive Reasoning Engine System 2). SCARE-S2 abduc-
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tively finds regions that can then later be used to cue other
intelligence assets to find an HVT. Applying SCARE-S2
to our Afghanistan dataset produced regions with a signif-
icantly higher density of HVTs (by a factor of 35), where
half of the abduced ground regions (normally of an area
less than 100km2) would contain at least one HVT. Further,
each region produced by SCARE-S2 contained, on average,
4.8 villages - hence searching them is not resource-intensive
for many surveillance platforms. Due to the high density of
HVTs within the regions, we feel that they could be used for
NAIs and aide in combat operations.

This paper is organized as follows. First, we briefly re-
view the region-based abduction framework of (Shakarian
and Subrahmanian 2010) and present some extensions we
used to address our Afghanistan-specific problem. Then we
describe our dataset for Afghanistan. This is followed by
a description of our implementation along with our experi-
mental results and discussion.

Region-Based Geospatial Abduction

In this section, we briefly review the framework of (Shakar-
ian and Subrahmanian 2010) - which is not new material.
This is followed by our practical, Afghan-specific extensions
in the next section (which is new in this paper).

We assume the existence of a real-valued M × N space
S whose elements are pairs of real numbers from the set
[0,M ]× [0, N ]. An observation is any member of S . We use
O to denote an arbitrary, but fixed, finite set of observations.
We assume there are real numbers α ≤ β such that for each
observation o , there exists a partner po (to be found) whose
distance from o is in the interval [α, β].2 Without loss of
generality, we also assume that all elements of O are over β
distance away from the edge of S .

Throughout this paper, we assume the existence of a
distance function d on S satisfying the usual properties of
such distance functions.3 We now define a region and how
they relate to the set of observations. Our intuition is simple
- a region explains an observation if that region contains a
partner point for that observation.

Region/Region Explanation

• A region r is a subset of S such that for any two points
(x, y), (x′, y′) ∈ r, there is sequence a of line segments
from (x, y) to (x′, y′) s.t. no line segment lies outside r.

• A region r explains point o in S iff there exists a point
p ∈ r such that d(o, p) ∈ [α, β].

Note that regions can have any shape and may overlap.
Throughout this paper, we assume that checking if some
point o is explained by region r can be performed in
constant (i.e. O(1)) time. This is a reasonable assumption
for most regular shaped regions like circles, ellipses and
polygons.

2(Shakarian, Subrahmanian, and Sapino 2010) describes meth-
ods to learn α, β automatically from historical data.

3d(x, x) = 0; d(x, y) = d(y, x); d(x, y) + d(y, z) ≥ d(x, z).

Region Explanation Problem (REP)
INPUT: Given a space S , distance interval [α, β], set O
of observations, set R of regions, and natural number
k ∈ [1, |O|].
OUTPUT: Set R′ ⊆ R, where |R′| ≤ k and for each o ∈ O,
there is an r ∈ R′ s.t. r sub-(super-) explains o.

(Shakarian and Subrahmanian 2010), showed this deci-
sion problem to be strongly NP-complete, meaning that
the optimization version (that seeks to find an explanation
of minimal cardinality) cannot be approximated by a fully
polynomial-time approximation algorithm unless P==NP.
However, the problem also reduces to an instance of set-
cover, which means that a solution can be obtained within
a reasonable approximation factor (1 − lg(f), where f is
the maximum number of regions associated with any given
observation). We have included the algorithm, GREEDY-
REP-MC2 from that paper.4

GREEDY-REP-MC2
INPUT: Set O of observations, set R of regions
OUTPUT: R′ ⊆ R

1. Let O =
⋃

r∈R
{Or}

2. For each observation o ∈ O, let GRPo = {Or ∈ O|o ∈ Or}
3. For each observation o ∈ O, let RELo = {o′ ∈ O|o′ ∈⋃

Or∈GRPo
Or} and let keyo = |RELo|

4. Let O′ = O, set R′ = ∅
5. While not O′ ≡ ∅ loop

(a) Let o be the element of O where keyo is minimal.
(b) Let the element Or be the member of GRPo s.t. |Or ∩ O′|

is maximized.
(c) If there are more than one set Or that meet the criteria of

line 5b, pick the set w. the greatest cardinality.
(d) R′ = R′ ∪ r

(e) For each o′ ∈ Or ∩ O′, do the following:
i. O′ = O′ − o′

ii. For each o′′ ∈ O′ ∩RELo′ , keyo′′ −−
6. Return R′

Adaptations for Afghanistan. There are two parts of the
formalism of region-based abduction that are generally de-
fined – the distance function (d) and the set of regions (R).
In the experiments of (Shakarian and Subrahmanian 2010),
we used a Euclidean distance function and we generated the
regions from the REGION-GEN algorithm of that paper,
which discretizes the entire space (hence, making it imprac-
tical for use here). Hence, we use d and R as a way to adapt
region-based abduction to our Afghanistan scenario and ad-
dress each of the three concerns outlined in the introduction.
Our strategy is to build a special distance function, dafgh ,
and use this function and the set of observations, O, to gen-
erate R.

4Due to lack of space, we have omitted an example illustrating
how this algorithm works. We refer the reader to (Shakarian and
Subrahmanian 2010) for such examples.
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To address the first concern, that of multiple tribes, as-
sume we have a set of tribes, T = {t1, . . . , tm}. Based on
our data set, we can assume we have the following function
tribes : S → 2T which takes a point in the space and returns
a set of tribes. Two points in the space, p1, p2, are tribally-
related iff tribes(p1)∩ tribes(p2) �≡ ∅. When we create our
distance function, we will do so in a way to enforce this as
an additional criterion that there must be at least one tribe
that has a presence in the observation and partner location.
The idea here is that an HVT must have a tribal-relationship
with the lower-level cell conducting the attack, otherwise the
two groups may not have a confluence of interest.

To address the second and third concerns, we appeal to
the idea that the road networks of Afghanistan binds parts of
this varied country together. Such sentiments are echoed in
other work such as (Conover 2010). So, for any two villages
on the road network (RN , an undirected graph where the
vertices are villages) of Afghanistan, we define the function
spRN : S × S → 
 to return the shortest distance on the
Afghan road network between the two points. Using shortest
path on a road network is also useful as our attack and HVT
data were all geolocated by village. Hence, we put these
concepts together to create our new distance function, dafgh ,
defined below.

dafgh(p, p
′) =

{
spRN (p, p′) iff tribes(p) ∩ tribes(p′) 	≡ ∅
∞ otherwise

We use this function to generate regions via the algorithm
REGION-GEN-AFGH - presented for the first time in this
paper. A practical improvement we introduced was in deter-
mining the set Vo for each observation. We first determined
the set V (Euc)

o Vo computed with a Euclidean distance func-
tion on the interval [0, β] - as the Euclidean distance function
can be calculated much faster than shortest-path. From this
set, Vo is determined. It should be noted that the algorithm
runs with a complexity O(K · |O| · T (RN )) where K is a
constant bound on the number of partners distance β away
from a given observation and T (RN ) is the time complexity
to find the shortest path between two points in RN . Another
practical extension we added was to the output of GREEDY-
REP-MC2. Any returned region over 1000 sq km was not
included in the output. Our intuition here is that a region
so large is not useful to an analyst attempting to cue other
intelligence assets.

Afghanistan Data Set

Our data-set consisted of HVTs and attack data from the
Afghan provinces of Hilmand and Kandahar from January
- June 2010 supported by tribal and road network informa-
tion. Below we provide details of the data-set.
Provincial Data. All provincial data, including boundaries
of provinces and districts, road networks, and village lo-
cations were provided by (Afghanistan Information Man-
agement Services (AIMS) ). We considered the Hilmand
and Kandahar provinces, which consist of 29 districts. The
road-network (RN = (V,E)) is an undirected graph of
30, 304 vertices (1604 of which are identified as villages)
and 61, 064 edges.

REGION-GEN-AFGH
INPUT: Space S , observations O, reals α, β
OUTPUT: Set of regions R
1. Let the road-network, RN = (V,E)

2. For each o ∈ O, find the set Vo = {v ∈ V |dafgh(o, v) ∈ [α, β]

3. Let L =
⋃

o∈O Vo. For each p ∈ L let Op be the set of obser-
vations that can be associated with it.

4. Partition L into subsets, denoted LO′ , where O′ ⊆ O and p ∈
LO′ iff Op ≡ O′.

5. For each LO′ , create region r that is the minimum-enclosing
rectangle of all elements in LO′ . Add r to R.

6. Return set R.

Attack Data. We used a series of 203 attack events in
Afghanistan from the (National Counter-Terrorism Center
(NCTC) ). 103 of these events were from January-April
2010 and used to learn the [α, β] distance constraints, while
the remaining 100 attacks (May-June 2010) were used as
set O of observations. We actually divided the set of obser-
vations into 12 subsets, O1 ⊆ O2 ⊆ . . . ⊆ O12, with each
subsequent set of observations containing 5 days more worth
of attacks than the previous (i.e. O1 was May 2-6 and O2

was May 2-11). All attacks in the WITS database were iden-
tified by village – corresponding with the AIMS information
described earlier.
HVT Data. We collected a total of 78 HVTs based on of-
ficial reports from (International Security Assistance Force
(ISAF) Afghanistan ). These reports spanned January-
September 2010. We used the reports of January-April 2010
(27 HVTs) to learn the [α, β] distance constraints and the re-
mainder for a ground-truth comparison (notice, this time in-
terval is greater than that used for the set of observations, as
an associated HVT with an attack may not necessarily have
been located in the same time window described earlier).
As with the attack data, each HVT was geo-located by the
ISAF report with a village, which corresponded to the AIMS
information. We manually identified only certain weapons
caches and captured/killed enemy personnel as HVTs. Be-
low we present our criteria in Figure 1 - it is based on the
combat experience of one of the authors.
Tribal Data. To create the tribes function, we used the
tribal data from (Naval Postgraduate School (NPS) ) that as-
sociated districts in Afghanistan with a set of tribes. All
together, there were 23 tribes reported by the NPS.
Distance Constraints. Using the simple algorithm FIND-
BOUNDS of (Shakarian, Subrahmanian, and Sapino 2010),
which essentially returns an upper and lower distance bound
on the shortest distance to an HVT given a set of attacks, de-
termined the [α, β] bounds to be [0.0, 65.88] km based on the
historical attack and HVT data from January-April 2010.

Experimental Results

Setup. Our implementation of SCARE-S2, runs on a
Lenovo T400 ThinkPad laptop equipped with an Intel Core
2 Duo T9400 processor operating at 2.53 GHz and 4.0 GB
of RAM. The computer was running Windows Vista 64-
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• Cache HVTs:

– The cache contains 3x or more mortar rounds
– The cache contains mortar tubes
– The cache contains 3x or more rockets
– The cache contains 10x or more grenades
– The cache contains 5x or more RPG launchers
– The cache contains 20x or more RPG rounds
– The cache contains 15x or more AK-47’s (or other similar

rifles)
– The cache contains 3x or more land-mines
– The cache contains ”rooms” full of communications

equipment (or ”rooms” full of any type of equipment)
– The cache contains a DsHK or any other anti-aircraft

weapon (including any number of Stinger missiles)
– The cache contains 5x or more RPK machine guns (or

similar capable systems such as M60, M249, etc.)
– The cache contains 5x or more sniper rifles (such as a Dra-

gunov)

• Personnel HVTs:

– Reported listed individual as an insurgent “commander”
– Reported listed individual as an insurgent “sub-

commander”
– Reported listed individual as an insurgent “planner”

Figure 1: HVT criteria.
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Figure 2: Number of attacks vs. runtime (average over 10
trials) and average region area.

bit Business edition with Service Pack 1 installed. This
modest hardware setup was selected as deploying units to
Afghanistan are typically equipped with Windows-based
laptop systems. Isolated command posts, with limited con-
nectivity to a network due to terrain restrictions may only
have access to this limited computation power.

We implemented SCARE in approximately 4000 lines of
Java code. Java Runtime Environment (JRE) Version 6 Up-
date 14 was used. The software was developed with Eclipse
version 3.4.0. We used the JGraphT library version 0.81 to
implement the Fibonacci heap and the graph structure. Ad-
ditionally, BBN OpenMap was used for some of the geospa-
tial methods. We also added the capability to output KML
files so that the results could be viewed in Google Earth
- we used Google Earth 4.3.7284.3916 (beta) operating in
DirectX mode. Experimental results were also collected in
CSV-formatted spreadsheets.
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Figure 3: Number of attacks vs. number of regions and HVT
density.

Runtime Experiments. We examined runtime of the algo-
rithm by running the algorithm on each of the 12 subsets
of observations described earlier. We observed two things:
that the relationship between runtime and number of attacks
was linear and that the runtime of REGION-GEN-AFGH
dominated the runtime of GREEDY-REP-MC2 (which was
negligible). This is primarily the result of the calculation of
the shortest path. As stated earlier, this relationship is linear,
so our result depicted in Figure 2 is unsurprising.
Area of Regions. As with (Shakarian and Subrahmanian
2010), we examine the average area of the regions. In gen-
eral, smaller regions are preferred and as set O grows, the
regions should become smaller. In each of the 12 trials, there
was never more than one region over 200 sq km, and as set
O increased, the average area approach 100 sq km – this is
exactly what we are looking for. We plot the average and
maximum areas in Figure 2. Note that a few spikes in aver-
age area are directly related to spikes in maximum area from
a few outliers produced on some runs. Note that only a third
of our runs produced a region over 200 sq km. Although
even 100 sq km may seem like a large area, we must con-
sider the density of villages - which is what we are attempt-
ing to locate. The overall density of villages for the entire
area considered was 0.0064.5 By the nature of how the re-
gions are generated, they inherently have more villages. We
observed that when we considered the entire set of attacks,
no region contained more than 8 villages, with an average
village density of 4.8 villages per region. As such is the
case, we feel that the regions produced by SCARE-S2 will
be helpful in directing intelligence, surveillance, and recon-
naissance (ISR) assets.
HVTs Enclosed by Regions. In Figure 3, we plot the num-
ber of regions returned by each run, as well as the number of
regions that enclose at least one HVT from the ground-truth
set. Although the number of regions increase with the num-
ber of attacks (from 1 to 6), the number of regions enclosing
an HVT also increase (from 0 to 3). While we should ex-
pect that solutions with more regions to enclose more HVTs,
we must also recall that the regions become smaller with
each run. Further, we also examined HVT density (number
of HVTs divided by total area of all regions), which also

5In the newest version, SCARE-S2 also runs the geospatial ab-
duction algorithm of (Shakarian, Subrahmanian, and Sapino 2010)
which abduces points (villages, in this case). Hence, the output
now not only included regions, but villages of interest as well -
which allows us to further reduce the search-space for HVTs.
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Figure 4: Regions returned after considering attacks from
May-June 2010.

increased with each run (note we had two outliers, identi-
fied in Figure 3 as points A and B. In these two runs, the
software returned larger regions of size 719.68 sq km and
403.34 sq km that enclosed a large urban area where many
HVTs were found. Eliminating these regions from the solu-
tion would eliminate these artificial spikes in density). When
we considered the entire two months of observed attacks, the
HVT density in the regions was over 35 times greater than
the overall HVT density in the provinces. We remind the
reader that the the regions are meant to be used as Named
Areas of Interest (NAIs) for use by intelligence personnel.
These NAIs would then be used to cue other intelligence
assets (for example, a UAV or a HUMINT team) to con-
duct a more fine-grained search (hence, avoiding a search
in a larger area). Therefore, despite only half the returned
SCARE regions containing NAIs, the small size of the re-
gions, along with the high density of HVTs, make them in-
valuable for the intelligence process.
Discussion. We shall now consider our final run of the algo-
rithm, where we considered the entire set of 100 attacks from
May-June 2010. This run produced the most regions enclos-
ing HVTs, the greatest HVT density (discounting spikes A
and B), and the smallest average region area.

This trial of the software produced 6 regions, labeled A-F,
shown in Figure 4. Half of them enclosed an HVT. However,
there were other ISAF reports that did not include village
information. We did not consider these additional reports in
any part of our experiments. However, all three regions re-
turned by this experiment that did not enclose an HVT were
located in districts where an HVT was reported (with no vil-
lage information). For region D, there were 11 such reports,
for region F, there were 4 such reports, and for district E
there were was one such report. Let us now consider the
HVTs found within regions A-C, depicted in Figure 5. Re-
gion A (with an area of 102.5 sq km) encloses the village
of Bahram in the Ghorak district of Kandahar. According to
ISAF PAO report 2010-05-CA-052, on May 5, 2010, a com-
bined ISAF-Afghan force captured a Taliban commander in

Region A 
Report 2010-05-CA-052  

Region B 
Report 2010-07-CA-11  

Region C 
Report 2010-08-CA-161   

Figure 5: Close-up view of regions A-C with actual HVTs
plotted.

this village, who was responsible for several improvised ex-
plosive device (IED) attacks as well as movement of foreign
fighters in the country. He also had a cache that included
automatic rifles and heroin. Region B (with an area of 72.0
sq km) encloses the village of Makuan, in the Zhari district
of Kandahar. According to ISAF PAO report 2010-07-CA-
11, on July 18, 2010, a combined Afghan-ISAF force con-
ducted a raid on a compound where a Taliban weapons fa-
cilitator was believed to reside. The unit received fire from
insurgents, and returned fire killing several of them. As they
approached the compound, they found several IED’s placed
to guard the facility. The compound was found to be a IED
factory and a bunker system that contained munitions. Re-
gion C (with an area of 71.0 sq km) encloses the village
Kharotan in the Nahri Sarraj district of Hilmand. ISAF PAO
report 2010-08-CA-161 describes how ISAF forces detained
the Taliban deputy-commander of the Lashkar Gah district
there on August 14, 2010.

Related Work and Conclusions

Recently, there has been some work dealing with analyti-
cal and computational methods for reducing the IED threat
in a counter-insurgency environment. (Marks 2009) uses
dynamic programming scheme to determine optimal path
on a network to conduct route-clearing operations. (Curtin
2009) explores the use of linear-referencing to associate IED
events to certain parts of a road network. In (Li et al.
2009), the authors introduce the PITS system for predict-
ing IED events based on geographic features and other non-
geographic event (such as time). (Benigni and Furrer 2008)
the authors look to quantify the IED threat of a given route
at specific times of day. We would like to point out that all of
this work deals with the either the prediction of IED attacks
or avoiding potential locations of IED attacks – not locat-
ing HVTs (enemy personnel or logistics sites). Additionally,
our search for HVTs is at a much larger scale – we are con-
sidering whole provinces of a very large area. Hence, the
neutralization of the HVTs associated with an area of this
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size has a greater effect on the battlefield. To our knowl-
edge, this paper introduces the first computational method
for finding HVTs on the counter-insurgency battlefield. As
stated above, this works build on the concept of geospa-
tial abduction introduced in (Shakarian, Subrahmanian, and
Sapino 2009; 2010; Shakarian and Subrahmanian 2010).
However, none of these papers consider applying geospa-
tial abduction to the Afghanistan scenario as presented here,
or the special considerations already discussed. Geospatial
abduction is a form of abductive inference, first introduced
in (Peirce 1955). Two major existing theories of abduction
include logic-based abduction (Eiter and Gottlob 1995) and
set-covering abduction (Bylander et al. 1991). Geospatial
abduction is related to set-covering abduction (which has
been extensively explored in its application to medical di-
agnosis in (Peng and Reggia 1990)) as it reduces to an in-
stance of set-cover. Some instances of other problems such
as facility location and clustering can actually be encoded
in a geospatial abduction, but a reduction in the opposite di-
rection is not possible (see (Shakarian, Subrahmanian, and
Sapino 2010) for a detailed discussion on this comparison).

In this paper we introduced a piece of software called
“SCARE-S2” that applies geospatial abduction to the envi-
ronment of Afghanistan. Unlike previous work, where we
looked for small weapon caches supporting local attacks,
here we looked for insurgent high-value targets (HVTs),
supporting insurgent operations in two provinces. These
HVTs included the locations of insurgent leaders and ma-
jor supply depots. Applying this method of inference
to Afghanistan introduced several practical issues not ad-
dressed in previous work. Namely, we are conducting in-
ference in a much larger area (24, 940 sq km as compared
to 675 sq km in previous work), on more varied terrain, and
must consider the influence of many local tribes. We address
all of these problems and evaluate our software on 6 months
of real-world counter-insurgency data. We show that we are
able to abduce regions of a relatively small area (on aver-
age, under 100 sq km, containing, in average, 4.8 villages)
that are more dense with HVTs (35× more than the overall
area considered). There are other possible uses of geospa-
tial abduction, including counter-drug, police, and naturalist
uses. In our lab, we are also collecting data concerning ille-
gal mining operations in Africa and are considering geospa-
tial abduction as a possible tool to explore this international
problem. Some of these have been described as examples in
work such as (Shakarian, Subrahmanian, and Sapino 2010;
Shakarian and Subrahmanian 2010), but not explored from
an implementation standpoint. Such future studies would
highlight other practical issues to consider when applying
geospatial abduction to real-world problems, as was done in
this paper for the Afghan scenario. One such practical ex-
tension we are considering is the use social network data to
relate observations and partners (as we did in this work with
tribal data), which could aide in predictions.
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