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Abstract

Diabetes management is a difficult task for patients,
who must monitor and control their blood glucose
levels in order to avoid serious diabetic complications.
It is a difficult task for physicians, who must manually
interpret large volumes of blood glucose data to
tailor therapy to the needs of each patient. This paper
describes three emerging applications that employ Al
to ease this task and shares difficulties encountered in
transitioning Al technology from university researchers
to patients and physicians.
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Diabetes Management:
A Difficult Challenge

Type 1 diabetes (T1D) is an autoimmune disease in which
the pancreas fails to produce insulin, an essential hormone
needed to convert food into energy. It is a chronic dis-
ease, which cannot be cured, but which must be treated and
managed over time. T1D patients at the Appalachian Rural
Health Institute Diabetes and Endocrine Center are treated
with insulin pump therapy. A mechanical pump infuses the
patient with insulin, attempting to mimic and replace nor-
mal pancreatic function. The management goal is for the
person with diabetes to achieve and maintain blood glucose
(BG) levels close to those of a person without diabetes. It
has been experimentally determined that good BG control
can help delay or prevent serious long-term diabetic com-
plications, including blindness, amputations, kidney failure,
strokes, and heart attacks (Diabetes Control and Complica-
tions Trial Research Group 1993). Avoiding complications
improves quality of life for patients, while reducing the fi-
nancial burden of health care cost expenditures.

Diabetes management is a challenging task for patients,
who must monitor their BG levels and daily activities, and
for physicians, who recommend therapeutic adjustments
based on the monitoring data. Task complexity stems from:
(a) a wide variability among individual patients in terms of
sensitivity to insulin, response to lifestyle factors, propen-
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sity for complications, adherence to physician recommen-
dations, and response to treatment; and (b) voluminous BG
data, which is automatically collected through sensors, but
which must be manually analyzed and interpreted. Since
2004, we have been conducting clinical research studies
with T1D patients in order to develop and evaluate software
tools for intelligent diabetes management.

Al Solutions to Diabetes Management
Problems: Work in Progress

In the AI in Medicine tradition, real-world medical prob-
lems have provided fertile ground for Al research, driving
research directions in search of practical solutions. We be-
gan with case-based reasoning (CBR) and then synergisti-
cally incorporated machine learning (ML) approaches.

Case-Based Decision Support

The 4 Diabetes Support System™ (4DSS) aims to: (a) au-
tomatically detect problems in BG control; (b) propose so-
lutions to detected problems; and (c) remember which so-
lutions are effective or ineffective for individual patients. It
can assist busy clinicians managing multiple T1D patients,
and it might eventually be embedded in insulin pumps or
smart phones to provide low-risk advice to patients in real
time. CBR was selected as the initial approach because: (a)
diabetes management guidelines are general in nature, re-
quiring personalization; (b) a wide range of both physical
and lifestyle factors influence BG levels; and (c) CBR has
been successfully applied to managing other chronic medi-
cal conditions (Holt et al. 2005; Bichindaritz 2008).

The first step in developing 4DSS was to build a case base
as a central knowledge repository. Although abundant BG
data was initially available, usable cases were not. This is
because the life-events coinciding with BG levels, used by
physicians to determine appropriate therapy, were not rou-
tinely recorded. To acquire contextualized cases for the sys-
tem, a clinical research study was conducted, involving 20
T1D patients. Each patient participated for six weeks, man-
ually entering daily BG, insulin, and life-event data into an
experimental database via a Web-based interface. Physicians
reviewed the data, detecting BG control problems and rec-
ommending therapeutic adjustments. Patients implemented
the recommended adjustments (or not), and physicians re-
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viewed subsequent data to evaluate the clinical outcomes, in
an iterative cycle. Problems, solutions and outcomes were
structured into cases and stored in the case base. Figure 1
shows a sample case from 4DSS. Fifty such cases were ac-
quired during the clinical research study.

Problem: Nocturnal hypoglycemia. BG levels
are dangerously low all night. The patient
reports feeling “totally out of it” when she
wakes up. She does not eat anything to correct
the hypoglycemia until noon. She had not eaten
a bedtime snack the night before.

Solution: The patient should always have a
mixed-nutrient snack before bed. She should lower
her overnight basal rate. The combination of more
food and less insulin will prevent overnight lows.

Outcome: The patient reports eating mixed nuts
and crackers before bed. She sets the basal rate
in her pump as advised. BG data for subsequent
weeks shows that the problem is resolved.

Figure 1: A sample case

The sample case records an actual problem of nocturnal
hypoglycemia. Hypoglycemia, or low BG, leads to weak-
ness, confusion, dizziness, sweating, shaking, and, if not
treated in time, seizures, coma, or death. Hyperglycemia, or
high BG, contributes to long-term diabetic complications.
Extremely high BG levels can cause diabetic ketoacidosis,
a serious condition leading to severe illness or death. It is
important to note that patients do not know when prob-
lems are impending and are frequently unaware of problems
even once they occur. Problems that occur when patients are
asleep, as in the sample case, are especially dangerous.

Typically in CBR systems, reasoning begins with a known
problem that can be readily described and elaborated. Solv-
ing a given problem entails finding and adapting the most
similar, or most useful, case in the case base. In this domain,
problems are not usually given, or known a priori, but must
be detected in continuous patient data. Our approach was to
model automated problem detection routines on physician
problem detection strategies. Rule-based routines were im-
plemented to detect 12 common BG control problems identi-
fied by physicians. A 4DSS prototype was built to (a) detect
BG control problems in patient data; (b) display detected
problems to the physician, who would select those of inter-
est; (c) retrieve, for each selected problem, the most applica-
ble case in the case base; and (d) display the retrieved case to
the physician as decision support in determining appropriate
therapy to correct the problem.

Evaluation and feedback were obtained through a pa-
tient exit survey and two structured sessions in which di-
abetes practitioners evaluated system capabilities. Patients
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indicated that they would willingly accept automated deci-
sion support, but noted that the time required for data en-
try was a deterrent. Physicians noted that the integration
of BG, insulin and life-event data helped them to iden-
tify BG trends more readily and adjust therapy more effec-
tively. Conclusions were: (1) the prototype provides proof
of concept that intelligent decision support can assist in dia-
betes management; (2) additional problem/solution/outcome
cases are needed to provide solutions for more BG con-
trol problems; and (3) data entry time demands on the
patient must be reduced. Results of this study were re-
ported in (Schwartz, Shubrook, and Marling 2008; Marling,
Shubrook, and Schwartz 2008; 2009).

A second clinical research study, involving 26 T1D pa-
tients, was conducted to (a) reduce patient time demands
and (b) re-evaluate the 4DSS prototype. BG and insulin
data stored in the patient’s pump were uploaded to the ex-
perimental database rather than entered by the patient. Pa-
tients were asked for their typical daily schedules, and these
were used to approximate actual daily life-events. Patients
were not required to supply continuous glucose monitor-
ing (CGM) data, but it was uploaded for patients who nor-
mally used it as part of routine care. Data that could not
be automatically transferred or approximated was omitted
from consideration. During evaluation, approximately half
as many problems were detected per patient per week as
were detected in the first clinical study. This finding was
statistically significant (p = .017), although there were no
statistically significant differences between the two patient
populations and no reason to suspect that patients were ac-
tually experiencing fewer problems.

An adverse event that occurred during this study high-
lights the potential for 4DSS to impact health and wellbeing.
A participating patient experienced a problem in which his
pump failed and stopped delivering insulin. He was aware
that his BG was high, and he instructed the pump to deliver
more insulin. However, he did not know that the pump was
not functioning, and his BG continued to climb. He went into
diabetic ketoacidosis (DKA) and was admitted to the hospi-
tal, where he experienced a (non-fatal) heart attack. When
his data was scanned retroactively, the system automatically
detected the pump problem eight hours before the patient
was hospitalized. Had the system been running in real time,
the patient might have been alerted to make a simple adjust-
ment before experiencing DKA.

Conclusions from this study were: (1) lack of life-event
and CGM data impairs the ability to detect clinical prob-
lems; and (2) extending system capabilities to predict and
prevent problems presents new research challenges and new
opportunities to improve health outcomes. Results of this
study were published in (Schwartz et al. 2010).

A third clinical research study is currently underway with
the goals of enlarging the case base, developing additional
problem detection routines, and automatically adapting past
solutions to meet specific needs of current patients. Twelve
T1D patients have already completed a 3-month protocol in
which they: (a) upload insulin pump and CGM data weekly;
and (b) supply otherwise unavailable life-event data via a
Web browser on a daily basis. To date: (1) 30 new cases



have been added to the case base; (2) six new problem detec-
tion routines have been developed; and (3) a case adaptation
module has been implemented.

Machine Learning Classification of BG Plots

During 4DSS development, we encountered a type of BG
problem that we could not readily detect by encoding physi-
cian problem detection strategies in rules. This was exces-
sive glycemic variability, a bouncing back and forth be-
tween hypo and hyperglycemia, as illustrated by Figure
2. Glycemic variability is an active area of current dia-
betes research (Ceriello and Ihnat 2010; Kilpatrick, Rigby,
and Atkins 2010). Excessive glycemic variability has been
linked to hypoglycemia unawareness, an acutely dangerous
condition, and to oxidative stress, which contributes to long-
term diabetic complications (Monnier et al. 2006). Its suc-
cessful detection would enable routine screening for all T1D
patients, a valuable clinical application in and of itself.
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Figure 2: An actual patient’s daily blood glucose plot, ex-
hibiting excessive glycemic variability

Although glycemic variability is difficult to measure or to
formalize, physicians know it when they see it in BG plots,
like the one shown in Figure 2. Therefore, we considered
the quantifiable aspects of glycemic variability as they relate
to physicians’ perception. We began with the best-accepted
existing metric, the Mean Amplitude of Glycemic Excur-
sion (MAGE), which captures the distance between the lo-
cal maxima and minima (peaks and nadirs) of a BG plot
(Service et al. 1970). We then designed two new metrics to
capture aspects of variability not accounted for by MAGE.
These are distance traveled, which captures overall daily
fluctuation, and excursion frequency, which counts the num-
ber of significant glucose excursions in a day.

Three hundred BG plots were reviewed by two physicians
(JS and FS), who characterized each plot as excessively vari-
able or not, based on their gestalt perceptions of the plots.
They were in agreement on 218 of the plots, which were
then scored for MAGE, distance traveled, and excursion fre-
quency. The scores and physician ratings were used to train
ML algorithms to classify BG plots, using the Weka ma-
chine learning toolkit (Witten et al. 1999). Physicians then
rated another 100 BG plots as excessively variable or not,
for use in evaluating the ML classifiers. The best performing
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ML algorithm, a naive Bayes classifier, matched concordant
physician ratings 85% of the time. This preliminary work,
which serves as proof of concept, was reported in abstract
form (Marling et al. 2010); a full report is in press (Marling
et al. 2011). We believe that a clinically viable screen for
excessive glycemic variability can be built by: (a) obtaining
glycemic variability ratings from many more physicians; (b)
encoding additional measurable aspects of glycemic vari-
ability; (c) smoothing the BG data to reduce the effects of
noise; and (d) training and evaluating additional ML classi-
fication algorithms.

Support Vector Regression for BG Prediction

Detecting BG problems, as in 4DSS and the screen for
excessive glycemic variability, allows corrective action to
be taken. The ability to predict impending BG problems
before they occur would enable preemptive intervention.
This would not only improve overall BG control, but could
greatly impact patient safety. For example, the sleeping pa-
tient in the sample case (Figure 1) could be awakened and
advised to eat before becoming hypoglycemic. Then she
would not lie in a dangerous state all night long. Conse-
quently, a significant part of our current research effort is
directed towards designing ML models that can be trained
on available clinical patient data to predict BG levels.

Since BG measurements have a natural temporal order-
ing, we approach the task of predicting BG levels as a time
series forecasting problem. In time series prediction, the task
is to estimate the future value of a target function based on
current and past data samples. Numerous prediction prob-
lems in a wide array of domains ranging from finance (e.g.
stock market (Kim 2003)), currency exchange rates (Giles,
Lawrence, and Tsoi 2001)), to medicine (e.g. sleep apnea
(Aguirre, Barros, and Souza 1999)), environment (e.g. air
quality (Perez and Reyes 2001), rainfall rate (Toth and Mon-
tanari 2000)), or power systems (e.g. electric utility load
(Chen, Chang, and Lin 2004)) have been approached in the
past as time series forecasting problems.

We have conducted a preliminary experimental evaluation
in which a Support Vector Regression (SVR) model (Smola
and Scholkopf 1998) was trained to predict the BG levels
of a T1D patient. An arbitrary pivot date was selected about
one month into the experimental data. Then 7 days before
the pivot date were used to create training data, while test
data was created from the 3 days following (and includ-
ing) the pivot date. Since BG measurements are recorded by
CGM systems every 5 minutes, one day may contribute up to
288 training or testing examples. Two separate SVR models
were trained and tested to predict the BG levels for 30 and
60 minutes into the future. Training and testing examples
were represented as feature vectors using the following set
of features:

1. The BG level of patient x at present time .

2. A simple moving average over 4 past points from, and

including, £g.

An exponentially smoothed rate of change in BG level
over 4 past points from, and including, ;.



4. Bolus dosage totals starting 30 minutes before prediction
time, computed for durations of 30 minutes and 10 min-
utes respectively. The bolus dosage refers to insulin that is
injected before meals and/or to correct for hyperglycemia.

5. Basal rate averages starting right before prediction time,
over 5 or 15 minute time intervals. This is the rate at which
insulin is slowly and continuously infused into the patient
by the pump. The basal rate changes throughout the day
to accommodate changing insulin needs.

6. Meal carbohydrate amounts starting 30 minutes before
prediction time, for durations of 30 minutes and 15 min-
utes respectively.

7. Exercise intensity averages starting right before predic-
tion time, over 5, 30 or 60 minute time intervals. Exercise
tends to amplify the effect of insulin. This effect influ-
ences BG levels during and after exercise; the length of
the effect depends on the length and the intensity of the
exercise.

The influence that each type of event exerts on the BG level
is known to vary with time. This specific time dependent
variability was taken into account through the offset and the
length of the various time intervals that were used to define
the features above. For example, the effects of exercise are
strongest while the patient is exercising, but they may per-
sist for several hours, especially if exercise is intense. This
is why exercise features are computed in shorter 5-minute
intervals close to the time of exercise, with intervals length-
ening to 30 and 60 minutes as exercise recedes into the past.
The SVR models were trained with a linear kernel, using
a capacity parameter C' = 100, and a default tube width
e = 1.0. We used the LIBSVM implementation of SVMs
for regression (Chang and Lin 2001). In Table 1, we com-
pare the performance of the SVR models trained to predict
BG level for 30 and 60 minutes into the future with the sim-
ple baseline BGL(z,tp) that uses the present BG level to
predict any future BG level value. We use this simple base-
line for comparison only because it was found to outperform
more complex moving average and rate of change baselines.

30 minute predictions

Method Ervs | R? A B C|D|E

SVR 18.0 092 [ 930 | 70 | 00|00 |0

BGL(x,to) 25.1 0.84 | 878 | 11.8 | 00 |04 | 0
60 minute predictions

Method Erus | R? A B C|D|E

SVR 30.9 076 | 81.0 | 18.1 | 04 | 05| 0

BGL(xz,to) | 432 | 052|745 |215|22 |18 |0

Table 1: SVR and baseline BGL(x, to) results

We report the root mean square error F'rys, the coeffi-
cient of determination R?, and the percentage of predictions
falling in the 5 areas from A to E in the Clarke Error Grid
Analysis (CEGA) (Kovatchev et al. 2004). CEGA is a stan-
dard for evaluating the accuracy of BG measurement that is
normally used to assess the quality of blood glucose sensors.
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As shown in Figures 3 and 4, the Clarke Error Grid breaks a
scatter plot into five regions:

A. Points within 20% of the actual BG value

B. Points that are more than 20% off but that would not lead
to inappropriate treatment

C. Points leading to unnecessary, but not harmful, treatment

D. Points that obscure hypoglycemia or hyperglycemia,
leading to a lack of necessary treatment

E. Points misclassifying hypoglycemia as hyperglycemia,
or vice versa, leading to harmful treatment

E
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Figure 3: Performance of SVR for 60 minute prediction
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Figure 4: Performance of baseline for 60 minute prediction

The SVR models are promising, as they outperform the
baselines on all performance measures. The two CEGA plots



in Figures 3 and 4 show the performance of SVR and the
BGL(x,tg) baseline respectively for the 60 minute predic-
tion time. The plots clearly show that, overall, the learned
SVR model makes predictions that are closer to the ideal
diagonal line.

To account for individual patient differences, a predic-
tive model is trained for each patient. We also plan to ex-
plore transfer learning approaches that effectively exploit
data coming from multiple patients in order to improve the
model predictions, which will be especially useful for pa-
tients with limited historical data. Trained prediction models
will be stored in a new case base of models, so that we may
further consider the possibilities of adapting past models to
bootstrap predictions for new patients. Since the patient data
is often inaccurate or incomplete, we are investigating learn-
ing methods that are robust in the presence of missing or
uncertain data and that can also identify data anomalies au-
tomatically.

Al Technology Transfer:
Another Difficult Challenge

In this section, we share observations on the difficulties of
transitioning Al technology from the university setting to the
real world, based on the experiences of two of the authors
(CM and FS). We do this from the perspective of faculty
members intent upon keeping our “day jobs” of conducting
academic research, educating students, and treating patients
(FS). We recognize that: (a) issues differ for Al researchers
working for companies or starting up their own companies;
and (b) issues are more easily raised than resolved. Some
lessons learned are shared.

University technology transfer: The goal of the univer-
sity technology transfer office (TTO) is to facilitate com-
mercialization of intellectual property and to ensure that the
university benefits financially from the ideas of its faculty.
TTO goals for economic development have not always har-
monized with the faculty-held tenet of broad dissemination
of knowledge or the physician’s desire to improve the health
and wellbeing of patients. A high turnover of key person-
nel in the TTO at our university has also hindered progress.
Lesson learned: TTO personnel will conscientiously do their
jobs, and that means extra work for academics. An executive
overview presentation (just 10 slides) can help to provide fo-
cus and save time in TTO meetings.

Technology leaks: Ideas that we have published and/or
discussed with industry representatives have subsequently
been incorporated into marketed products without attribu-
tion. This has been good for patient care and good for the
commercial products, but bad for researcher financial sup-
port and researcher morale. Lesson learned: Transitioning
technology does not necessarily equate to monetizing it;
there may be intangible benefits.

Patents: The TTO filed a patent application on our be-
half. Should software be patented? Many computer scien-
tists would argue otherwise. Arguments in favor were: (a)
companies would not invest in unpatented technologies; and
(b) freeware is not suitable for safety-critical medical appli-
cations.

1672

Safety: When Al technology is to be used directly by pa-
tients in the United States, it must first be approved by the
U.S. Food and Drug Administration (FDA). While critical
for ensuring patient safety, the FDA approval process entails
extensive investments of time and money, making it infeasi-
ble for academics. As a consequence, we have directed our
focus to tools that help physicians manage patients, rather
than tools used directly by patients. This enables us to en-
sure patient safety by keeping a professional in the loop,
which removes FDA concerns but limits the avenues of re-
search and application. Lesson learned: Know the regula-
tory agencies in your application domain. A funding pro-
posal was rejected when a reviewer found it “astounding”
that we planned to run software in a medical device.

Conflict of interest: Patents, licenses, and new products
resulting in economic benefit to a faculty member can be
viewed as conflicts of interest by the university. This can
be so even when rights are co-owned by the university.
In particular, funding graduate students with money raised
for commercialization and/or supervising graduate students
whose work could contribute to product development may
lead to legal, as well as ethical, conflicts. In such instances,
faculty may need to leave the university to complete product
development without conflict. There is no conflict, however,
if a company funds university research and then uses the re-
sults in its products.

Lack of conflict-free money: A CEO of a medical device
company, reviewing our research, shared that patients expect
better and more intelligent software with each new hardware
release. However, patients also expect the software to be in-
cluded for free. Free is good for patients, and good for med-
ical device companies, but bad for funding Al research.

Forging Ahead

Despite technology transfer difficulties, we are forging
ahead with plans to make intelligent diabetes management
a reality for patients and physicians. We have a waiting list
of patients who have volunteered to participate in clinical
research studies. They are counting on us to translate the
research into practical tools they can use. We envision the
following potential avenues of commercialization and use:

e Software could be marketed directly to physicians for of-
fice use

e Software could be included in electronic health record
(EHR) systems

e Software could be embedded in insulin pumps and/or
smart phones for patient use

e Software could be incorporated in continuous glucose
monitoring (CGM) systems, so that all BG plots would
come with associated analyses

e BG Control Centers could be established, where BG data
could be uploaded, analyzed, and monitored by advanced
practice nurses, who would forward appropriate findings
to physicians and patients

In summary, diabetes management is more than a challeng-
ing domain for Al research. It is an opportunity for Al ap-



plications to positively impact the health and wellbeing of
people with diabetes.
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