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Abstract

We propose an intelligent tutoring system that con-
structs a curriculum of hints and problems in order to
teach a student skills with a rich dependency structure.
We provide a template for building a multi-layered Dy-
namic Bayes Net to model this problem and describe
how to learn the parameters of the model from data.
Planning with the DBN then produces a teaching pol-
icy for the given domain. We test this end-to-end cur-
riculum design system in two human-subject studies in
the areas of finite field arithmetic and artificial language
and show this method performs on par with hand-tuned
expert policies.

Introduction

This paper considers an Intelligent Tutoring System (ITS)
for teaching a student to master multiple skills by presenting
hints and problems to the student. Unlike previous ITS sys-
tems that focused on difficult multi-step problems (Conati,
Gertner, and Vanlehn 2002), once the skills in our setting are
acquired, the problems themselves are fairly easy to answer.
The difficulty is for the system to determine what problems
to ask or what hints to give based on the student’s proficiency
state with a goal of helping the student master all of the skills
quickly. We call this problem curriculum design.

In practice, when teachers design curricula they typically
divide subjects into lessons and order the presentation of the
lessons to best aid in learning. However, human teachers
are faced with the challenge of ordering their lessons to help
students as a group and are often unable to spare time for
individual student needs. This poses a dilemma since indi-
vidual one-on-one teaching is considered far more effective
than typical classroom style teaching (Bloom 1984).

In our approach to this problem, we mine statistics from
previous student training data in order to model the dynam-
ics of skill acquisition. From this data, we construct a Dy-
namic Bayes Net (DBN) (Dean and Kanazawa 1989), a pop-
ular representation from the reinforcement learning commu-
nity that has been used in previous work on tracking student
skill acquisition (Almond 2007). This factored model al-
lows us to generalize our mined knowledge and to consider
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curriculum design as a sequential decision making problem,
where an optimized policy maps states of student knowledge
to the most effective lesson (problem or hint) to pose next.
In effect, the policy acts on two levels, it encodes the overall
lesson organization but since it is state-based it can adjust to
individual students as their proficiencies change.

Such a curriculum design system is appropriate for indi-
vidual use either online or in a classroom setting. It can be
used to complement regular classroom work, or as a stand-
alone tutorial system. The structure we describe will be ef-
fective for any subject matter which can be broken down by
a domain expert into subtopics between which there are in-
herent ordering dependencies (i.e. any learning scenario in
which learning builds upon itself.) In the conclusion section
we discuss how to adapt this work to new domains.

To demonstrate the effectiveness of our approach, we ran
human-subject trials in two skill-acquisition domains where
students were unlikely to have strong prior knowledge. Our
results showed the DBN-based approach performed as well
as several expert policies and significantly better than the
random baseline. Also, the generality of our approach can be
seen in that only small modifications from our skill-teaching
DBN template need to be made to tailor our model to these
specific domains. The major contributions of this work are
a generalized DBN representation and algorithms for cur-
riculum design, as well as human-subject trials verifying the
validity of this approach.

Problem Definition and System Overview

The curriculum design problem involves a teacher interact-
ing with a student in a domain that contains a set of skills
S . Each skill s has a set of dependencies D(s), the mem-
bers of which are other “pre-requisite” skills. For instance,
in an arithmetic domain, the skill of multiplying might have
addition as a pre-requisite. In this work, we assume that D
maps each skill only to the skills that it directly depends on,
and that the dependency graph is acyclic. There is also a
set of facts F , which may be necessary for answering prob-
lems or interpreting hints about the skills. For instance, in a
language domain where the skills involve constructing sen-
tences from a given set of words to describe a picture (“The
circle is blue”), the student’s vocabulary would be consid-
ered a set of facts (knowing the meaning of blue), while
the ability to conjugate and place the words in the sentence

Proceedings of the Twenty-Third Innovative Applications of Artificial Intelligence Conference

1648



would depend on a number of skills.
The actions available to a teacher are to either provide a

hint H(s) or ask a problem P (s) about skill s and see the
student’s answer. Note the teacher will not necessarily be
able to choose the exact hint or problem given to the stu-
dent, rather a particular grounded problem will be randomly
selected from all available problems about s. This is because
our goal is for the teacher to lay out a general curriculum or
policy (e.g. when to ask a multiplication problem) and be-
cause the number of grounded problems may be infinite.

From a history of such interactions (or trajectory), the
teacher can model a student’s proficiency state ρ, composed
of the proficiency on each skill ρ(s). In general our ap-
proach to such tracking will involve a set of proficiency ad-
justment rules. These rules specify how the teacher updates
ρ(s) based on the history of the teacher-student interaction.
For instance, if the teacher stores proficiency values as inte-
gers, answering a problem from P (s) correctly might incre-
ment ρ(s) by 1, and a wrong answer could decrement it. The
goal of a teacher will be to, with as few problems and hints
as possible, have the student achieve the highest proficiency
value possible on each skill ρmax.

Our overall system uses the dependencies D(s) in con-
junction with a set of trajectory data from students trained
using hand-crafted problem presentation policies. A multi-
layered DBN that models the dynamics of ρ is constructed
using D to define the structure. The student data is used to
build the conditional probability tables (CPTs). The learned
DBN model is used by a planning algorithm which deter-
mines a teaching policy, mapping ρ to actions. This dynamic
curriculum is then used to train students who are evaluated
on a series of tests covering a wide range of skills.

A Multi-Layered DBN Representation
Our representation models a student’s changing proficiency
levels using a multi-layered Dynamic Bayes Net (DBN).
DBNs are used in reinforcement learning to represent tran-
sition functions for state spaces comprising multiple factors.
A traditional Markov Decision Process (Puterman 1994)
M = 〈X,A,R, T, γ〉 models an environment with states
X , actions A, reward function R : X �→ �, transition func-
tion T : X,A �→ Pr[X] and discount factor γ. However,
if the states comprise n factors x1...xn, then a tabular rep-
resentation of T will be exponentially large in n. DBNs
dodge this curse of dimensionality by assuming that each
factor is conditioned only on a small number (k = O(1))
of other parent factors φ(xi). This results in a distinctive
2-layer architecture with next state factors x′

i linked to par-
ents in the current timestep φ(xi) and the probabilities of
individual factor transitions stored in CPTs. The full tran-
sition function for an MDP is recoverable from the DBN
as: T (x, a, x′) =

∏n
i=1 Pr[x′

i|φ(x′
i), a]. Notice the number

of parameters that need to be learned to specify the DBN
representation is only O(nk), far smaller than the fully enu-
merated state space.

Unfortunately, a 2-layer DBN will not capture several im-
portant aspects of the domain, including some correlated ef-
fects. We will resolve these and several other issues by in-
troducing a more complex multi-level DBN structure.

Skill Teaching DBNs

Modeling skill acquisition as a multi-level DBN has been
proposed in prior work (Almond 2007) but the DBN was
constructed entirely (structure and CPTs) by hand and used
for state tracking with a hand-coded policy and an artificial
student. By contrast, we will show how the CPTs of a differ-
ently structured DBN can be learned from data and planned
with, to create a policy that we then test on human subjects.
We begin by mapping the parameters of the DBN to the com-
ponents of the curriculum design problem.

The state of our factored MDP consists of one factor for
each skill s ∈ S corresponding to the student’s proficiency
ρ(s) on that particular skill. By having a state factor for
the proficiency on each skill (such as the ability to multi-
ply 2-digit numbers), the system will be able to dynami-
cally choose problems or hints based on the student’s cur-
rent capabilities. The nodes corresponding to these factors
can be seen in the top and bottom rows of Figure 1, cor-
responding to the state of the agent at time t and t + 1,
respectively. Skill dependencies are encoded by edges to
layer ρt+1(s), either directly (node T0 in Figure 1) or indi-
rectly (through the Σ-Dep nodes in Figure 2). This depen-
dency structure means that the value of a skill on the next
timestep will depend on the proficiency values of all of these
related skills. We note that these edges only encode poten-
tial dependencies between skills and likely do not on their
own determine the optimal policy. The actions in the DBN
(the diamond shaped node) are all the H(s) or P (s) (sets
of hints or problems about a skill) that can be chosen by
the teacher. Rewards in our skill-teaching DBNs are simply
R(ρt) =

∑
s∈S w(s)I(ρt(s) = ρmax), that is a weighted

sum of the number of skills that have been mastered so far
by the student. In our studies we always used w(s) = 1.

Intermediate Nodes

We will use intermediate nodes to simplify and correlate the
calculation of next state probabilities given a current profi-
ciency state and an action. These nodes will generally re-
duce the number of parameters in the DBN and will help
capture correlations and interactions between parts of the
model.

Matching, Aggregation and Correlation We first con-
sider intermediate nodes for matching skills to the problems
or hints specifically about those skills. In a typical propo-
sitional DBN, factors are usually linked to the action node
itself, but this would add 2|S| possible parent values to each
CPT and most of these entries would be redundant, because
if the action is not H(s) or P (s) there is often no effect on
ρ(s). Hence, we introduce a Match node for each skill (yel-
low nodes in the figures), that indicates whether the action
is a hint for s, a problem on s, or not specifically about s. In
this way, the CPT for ρ(s) needs only to be increased by a
factor of 3 rather than 2|S|.

Another important intermediate node type for limiting
CPT size is the Aggregation node, which counts the num-
ber of parent nodes with some value. For instance, the green
Σ-Dep nodes in Figure 2 count the number of parent skills

1649



for a ρ(s) that have not reached the mastery level. This al-
lows nodes that may depend only on the number of mastered
pre-requisite skills to consider just this count, rather than all
possible combinations, leading to an exponential decrease in
the size of the corresponding CPTs.

Another modeling challenge is that if the student answers
a problem, multiple skill proficiencies might need to be up-
dated, so we must ensure that these changes will be synced.
These correlations are enforced by having all the skills that
might be affected by such a change linked directly (in the
same layer) to the next proficiency factor for the skill s. Such
correlations can be seen in the bottom layer of Figure 2.

Intermediate Nodes Based on Ground Facts While our
goal in this work is to build policies for student skill acquisi-
tion, the ground problems we present also have facts in them.
For instance, answering problems in our artificial-language
domain requires a student to know the meaning of the words,
not just how to order them. We do not want to lower the
proficiency rating on a skill if the facts used in the ground
action were not known, since an unknown fact is likely to
blame. Thus we introduce FactsKnown nodes for each type
of action (shown as red nodes in Figure 2), which, when a
ground action is presented, take on a binary value based on
whether all the facts in the problem are known or not. These
nodes are then attached to the corresponding skill proficien-
cies to handle the credit assignment described above and to
provide finer granularity in the CPT for advancing a skill
(some skills may be easier to learn than others when few
facts are known). When keeping track of fact proficiencies
is prohibitive, or during the planning phase when answers to
specific questions will not be tracked, one can estimate the
probability of knowing a fact based on the number of skills
known, a technique we utilized in the planning component
of our second case study.

In summary, we introduced a number of important inter-
mediate nodes and structures into the Skill Teaching DBN
template that are generally needed in modeling skill acqui-
sition. These included Match nodes to couple actions and
skills, Aggregation nodes for generalizing on dependency
proficiencies, FactsKnown nodes, and correlation links in
the ρt+1 layer. Generally, these structures keep the sizes
of the CPTs small, model correlations in action outcomes,
and keep track of the interactions between facts and skills.

Curriculum Design as Planning

Unlike other approaches that track a student’s state and map
this to a hand-coded policy, we will be using our learned
DBN model to create the teaching policy itself. We will
do so by treating curriculum design as a planning problem
with reward and transition functions specified with a DBN
as described above. Viewed in this manner, we can calculate
the value of each action a from a given proficiency state ρ
as Q(ρ, a) = R(ρ) + γ

∑
T (ρ, a, ρ′)maxa′Q(ρ′, a′), and

our policy is derived by choosing the maximum valued a at
a given ρ. Intuitively, these values tell us what action will
help us achieve full proficiency fastest, while also (through
the discount factor) coveting skill proficiencies that can be
learned sooner. This implicit trade-off between long-term

teaching goals and short term skill proficiency is a key com-
ponent of our approach and recognizes the practical limita-
tion of short teaching sessions. In our experiments we used
Value Iteration (Puterman 1994) to compute the Q-values
and the corresponding policy, but this approach was at the
limit of tractability (several hours), and future iterations with
larger state spaces will require approximate planners specif-
ically designed for DBNs, e.g. (Hoey et al. 1999).

Learning DBN Parameters from Trajectories

While the DBN architecture will be specified using the node
types above, the parameters for the individual CPTs will be
mined from data. In our studies, we will train the CPTs on
data from a series of “expert” and random policies as well as
some policies where users choose the problems or hints. The
mix of these data streams is important because mining data
collected from a single specific deterministic policy would
lead to simple mimicry of that policy due to “holes” in the
CPTs where we have no evidence as to whether or not a
problem will be answered correctly in a given context. The
use of human-guided exploration in the “choice” policies
(where students could select from a set of problems) also
yields information in many new areas that might lead to bet-
ter policies. In states where such “holes” still exist, we will
fill in the holes as “no change in state” to keep the agent in
known areas of the state space. This discouragement of au-
tonomous exploration is necessary because we need to run
human trials to collect data and many (overly optimistic) ex-
ploratory policies (Kearns and Koller 1999) are likely to be
unhelpful or even detrimental. Exploration issues are dis-
cussed further in the conclusion.

Case Study I: Finite Field Arithmetic

We begin with a case study on finite field arithmetic (FFA)1,
a simple domain where we made a number of assumptions
about the dynamics (hard coding many rules in the CPTs),
most of which are relaxed in the second case study. FFA
problems consist of mathematical operators (+, ∗,−, /) ap-
plied to a finite alphabet (in our case {0, 1, A,B}). While
some problems are intuitive to answer (A + 0 = A), oth-
ers require learning (A ∗ B =?). To reduce the size of the
domain and to ensure a clear skill hierarchy, we limited the
size of problems to 2 operators and we constructed a series
of chains of related problems. A chain consists of a primary
problem (e.g. A ∗ B = 1), a secondary problem involving
the primary problem ((A ∗ B) − A), and a tertiary problem
containing the secondary problem with its primary part re-
duced (e.g. A/(1 − A) from substituting A ∗ B = 1 into
(A ∗ B) − A). The action set contains problems (with the
answer revealed afterwards), and there are no hints. In this
way, we enforce a prerequisite hierarchy among the skills
(e.g learning anything from (A ∗ B) − A is quite difficult
without already knowing that A ∗B = 1).

Viewed in this manner, the domain has no facts, and the
skills are all the primary, secondary and tertiary problems

1Specifically, a “Galois Field” of size 4 or GF (22), although
an understanding of Finite Fields is not necessary for the readers of
this paper, nor for the subjects in this study
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from each chain and some “trivial” problems (like A + 0).
The proficiency value of each skill is 0 or 1 and we discuss
the adjustment rules below. The dependencies D link the
problems within each chain as illustrated in the DBN in Fig-
ure 1. Because of the small parent structure and absence of
facts, the only internal structure is from Match nodes.

We collected training data for the DBN using a number
of hand-coded policies, specifically a random policy, an ex-
pert policy represented as a finite state machine (FSM) that
grouped primary and secondary problems from the same
chain, and two “fixed orderings” without backtracking. One
of the fixed orderings kept problems in the same chain to-
gether and performed as well as the FSM, while the other
mixed problems from different chains and was on par with
random. During a trial, the proficiency adjustment rules in-
creased ρ(s) from 0 to 1 after 3 consecutive correct answers
and decremented it for 2 consecutive wrong. However, to
get as much out of the data as possible, in our training we
built CPTs where 1 right or wrong answer produced the tran-
sition, a technique that was extremely helpful in larger state
spaces (as in the next case study). We also assumed that
secondary or tertiary problems could not be answered cor-
rectly without their dependencies being mastered (this de-
terministic effect of dependencies is relaxed in the second
case study). Thus, the main problem left to the DBN in this
simplified domain was choosing what chain to pick the next
problem from.

Interestingly, unlike the FSM policy (the best of the hand-
coded techniques), the learned DBN policy “swapped” be-
tween chains, but its policy was far more successful than the
fixed ordering that also tried to swap. The DBN taught most
of the primary problems first (in order of the easiest to learn
based on the data), then the secondary and the more difficult
tertiary problems. This tendency reflects the DBN’s pref-
erence to teach easy skills first (an effect of the discounted
value function), a trait that is crucial in domains with a finite
amount of training time.

We collected results for our DBN policy and compared
them to the hand-tuned policies using a 15 point pre-test (be-
fore any training) and post-test set of questions where, un-
like in training, students were not told the correct answers.
We used a subject pool of university undergraduates, mostly
between ages 18-20, all taking an introductory psychology
course and receiving modest class credit for participation.
The subjects were trained on 24 problems as chosen by the
teaching policy between the pre and post tests. The means
and standard deviations for the improvement (post-test mi-
nus pre-test) with the Random, FSM and DBN policies were
2.964(0.57), 4.692(0.58) and 5.037(0.48) respectively. A
standard t-test shows (with p < 0.05) that there was a sig-
nificant different in improvement between random and the
other two policies.

Since we were limited to relatively small sample sizes (26
in both) we further explored the FSM and DBN data using
resampling. By selecting with replacement from the FSM
sample we generated a new sample of 26 students, FSM′.
We performed the same operation on the DBN group to give
us DBN′. We then calculated the ratio of the delta values
for the two new samples as δDBN ′/δFSM ′ and repeated this

P0 S0 T0

P0' S0' T0'

Action

P7' S7' T7' Triv0' Triv1'

P7 S7 T7 Triv0 Triv1

Match Match Match Match Match MatchMatch Match

t

t + 1

Figure 1: FFA Study DBN Structure and sample CPT

process for 100, 000 bootstrapped samples. If the means of
the two groups are equal we would expect the ratio to be
1.0, but the upper and lower 2.5% quantiles yielded ratios of
approximately 90% to 132% implying that the performance
of the students under the DBN policy is at 90-132% of the
performance of those under the FSM policy.

Case Study II: Artificial Language

Our second domain focused on the syntax and semantics of
an artificial language. The language contained only a few
words (few facts), but the words could be ordered to con-
struct phrases with very different meanings (many skills).

Language Description

The language incorporates three types of words: nouns,
color modifiers, and quantity modifiers. Each of
three nouns (N ) refers to a simple geometric shape:
“bap”= ,“muq”= ,“fid”= . Three color modifiers (C)
refer to colors (“duq” = orange, etc.). Colors are used as
postfix operators on nouns (e.g. “muq duq”= ).

Three quantity modifiers (Q), each of which is polyse-
mous, have the following meanings: “oy”= {small, one,
light},“op”={large, many, very},“ez”={not, none, non}.
The specific meaning of a Q-modifier depends on the con-
text. As a prefix to an N (i.e. QN ) a Q signifies the size
of the noun, (e.g. “op muq”= “a large triangle”). As a
suffix to an N , (i.e. NQ), it signifies the cardinality of the
N , (e.g. “muq oy”= “one triangle”). As a suffix to a C,
(i.e. CQ), it signifies the intensity or saturation of the C
(e.g. “muq duq op”= “a very orange triangle”). Multiple
Q-modifiers can be used in a single phrase as in “op muq op
nef oy”= “many large light-green triangles”.

Skills, Facts and Actions The skills in this domain
are the ability to construct or understand all the kinds
of phrases up to length 5. That is, S is the set
{N,C,NC,NQ,QN,QNC,...,QNCQ,QNQCQ}. The
dependency structure D simply links every skill s of length
l to any skill of length l− 1 that is a substring of s The state
space is defined by the proficiency on each skill, giving us
the top and bottom layers of the DBN in Figure 2.

There are 3 possible values for each ρ(s), and the adjust-
ment rules used during testing were that 3 correct answers in
a row incremented ρ(s), and 1 wrong answer decremented
it if the facts were known. A hint increased the student’s
proficiency to a value of 1 (but not higher). Finally, a wrong
answer for a skill that had ρ(s) = 0 would decrement the
dependent skills. Since we are interested in learning skills
(not facts), a table of definitions for all of the N and C words
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b.)

Figure 2: A partial DBN (and partial CPT for QNQ′) for the
artificial language domain, along with a sample problem.

was given to all students, so the only facts to be learned were
the Q words.

As for the actions, hints took the form of a phrase paired
with its meaning while problems came in three types, chosen
randomly once a P (s) was selected. In the first type (shown
in Figure 2), a phrase was presented followed by a list of
possible meanings. In the second, a meaning was followed
by a list of phrases. In the third, a phrase with a single word
replaced by a blank paired with a meaning was followed by
a list of possible words to fill in the blank.

DBN Construction and Training

The state factors for the DBN are simply the proficiencies
on the skills with dependencies as described above. Several
of these (like N ), are assumed to always be mastered, since
they are given to the student.

The internal structure of the DBN (Figure 2) contains all
three types of intermediate nodes defined earlier. This in-
cludes the Match nodes linking hints and problems to their
skill, Aggregate nodes for counting the parent nodes below
mastery level (up to 2), and FactsKnown nodes. This leads
to a DBN with fewer parameters and stronger generaliza-
tion, at the risk of some extrapolation. In our studies, we
instantiated the FactsKnown nodes based on the same pro-
ficiency adjustments as the skills, except once mastery was
reached on the facts, it was assumed they would never decre-
ment. During the planning phase (when ground facts are not
considered nor tracked), the probability of knowing the facts
was set based on the number of skills mastered so far. These
probabilities were based on our subject data. Finally, we
want a wrong answer to P (s) to be able to decrement the
skill proficiencies in D(s) if ρ(s) is already 0. The edges
linking nodes in the bottom layer of the DBN enforce these
correlated changes. A partial CPT for ρ′(QNQ) is shown in
Figure 2.

Training As in the FFA study, the CPT parameters were
learned from traces of other policies, including a random
policy and several expert variants. These expert policies kept
track of ρ and used the same proficiency adjustment rules as
the DBN, but used a fixed skill ordering (constructed by the
language designers). At each step, they selected a problem

for the lowest ordered skill not yet mastered (or randomly
when all were mastered), choosing a hint only when a ρ(s)
was decremented to 0.

We also experimented with versions of the expert and ran-
dom policies that offered a choice of 3 problems/hints to
a student. This was done both to better engage the stu-
dents and, when the choices were over different skills, to
act as a form of human-guided exploration in the training.
In the first version (called “CHOICE”), the expert or ran-
dom policy was used to select a grounded P (s) or H(s) as
before, but in both cases, two other ground problems from
P (s) were also presented as alternative problems. In this
initial presentation, the meaning in the hint or the multiple
choice answers were not revealed. The student selected one
of these problems and answered it as before. Using the idea
of the zone of proximal development (Vygotsky 1978), we
also added the “CHOICE ZPD” condition to just the expert
policy, in which one of the alternative problems came from
a higher-order skill in D that was not yet mastered.

When training the CPTs, we again used a different profi-
ciency adjustment rule for incrementing ρ(s), by assuming a
single answer could increment or decrement ρ(s). This was
done because keeping track of all the stages with the “3 in a
row” rules made the state space too large, and when ignor-
ing the stages the data with the original rule was too sparse to
allow deviation from the expert policies. We also expressly
disallowed increments in ρ(s) when 2 or more dependencies
of s had not been mastered. The resulting DBN policy dif-
fered from the training policies in a number of ways. First,
the DBN policy exploits the deterministic effect of hints by
giving them whenever a p(s) is at 0, thereby avoiding the
loss of proficiency of the pre-requisite skills. Interestingly,
the DBN policy also chose a different ordering for teaching
the skills, specifically grouping related length 2 and 3 skills
where only a C or N is added (e.g. teaching QN and then
QNC next).

Evaluation and Results

For each of the policies, students drawn from a pool of uni-
versity undergraduates, most participating for credit, com-
pleted four 7-minute training sessions with each session fol-
lowed by a 20-question test. Unlike in training, answers to
the test questions were never given to the students, though
their score on each test was. All students completed the first
two training/test sequences. As an incentive, beginning with
the second test, any score of 90% or higher allowed the stu-
dent to leave the experiment early The final test score of
students that “tested out” was propagated forward replacing
any missing scores for analysis.

Our analysis will focus on several factors and their inter-
actions. By condition we mean a combination of two fac-
tors: the policy by which the teacher selects problems (ei-
ther random, expert, or DBN) and the type of Choice pro-
vided to the student as described earlier. In all, we have six
conditions: Random-NoChoice , Random-Choice, Expert-
NoChoice, Expert-Choice, Expert-Choice-ZPD and DBN-
NoChoice. Our dependent measure for most analyses is the
increase in the number of correct problems between the first
test and the last.
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Figure 3: Mean score on each of four tests by condition.

Comparing Policies Overall, students improve between
the first test and the last in the Expert and DBN conditions
but not in the Random conditions. Mean scores on each of
the four tests are plotted by condition in Figure 3. In the
Random conditions, students’ performance on the tests hov-
ers around chance (0.25) and does not improve. This re-
sult establishes that the policy for presenting these artificial-
language problems matters: if it is a random policy, students
don’t learn; if it is an expert or DBN policy, they do.

The amount and rate at which students learn in the Expert
and DBN conditions do not seem very different. Students in
all of these conditions start at roughly chance performance
on the first test and are able to answer roughly 45% of the
questions correctly on the final test. A two-way analysis
of variance comparing DBN with the other Expert policies
crossed with test number shows a main effect of test number
(p < .0001) and no main effect of DBN nor any interaction
effect. That is, students improve from one test to the next
but whether they work under the DBN policy or any other
expert policy makes no difference to their improvement.

So is the DBN policy as good as the other expert poli-
cies? This is a confidence interval question: We will show
that the confidence interval around the difference between
the policies is small and contains zero. Let χs,q,t = [0, 1]
represent whether student s answered question q on test t
correctly (1) or incorrectly (0). Let π•,q,t be the mean num-
ber of correct answers, averaged over students, for question
q on test t, and let ιq = π•,q,3 − π•,q,0 be the mean im-
provement on question q between the first test (test 0) and
the last (test 3). The average value of ιq for DBN students
is 15% and for the other expert policies is 16%. The confi-
dence interval around ιq is [−0.06, 0.09]. This means that,
by question, the difference in improvement under the DBN
and other expert policies ranges from −6% to 9% with 95%
confidence. Another way to look at the difference between
DBN and the other expert policies is to ask how much of the
variance in improvement does the difference explain. In a
two-way analysis of variance, where the factors were policy
(DBN and NotDBN) and test question (with 20 levels), the
mean square error for the first factor was 0.1 and for the sec-
ond was 1.14. This means that the test questions account for
more than ten times as much of the variance in improvement
as the policy. It is harder to improve on some test questions
than on others, and the policy – whether it is DBN or another

expert policy – has a small effect relative to the differences in
improvement due to the test questions themselves. In sum,
the DBN policy’s performance is indistinguishable from the
other expert policies, at least with respect to improvement
from the first test to the last.

Related Work

Many traditional ITS systems that follow students as they
work through a specific type of multi-step problem (e.g.
solving a physics problem) utilize Bayes Nets in some ca-
pacity, usually to model the partially hidden state of the stu-
dent. For instance, Bayes Nets (but not MDP-style DBNs)
have been used in a physics tutoring system (Conati, Gert-
ner, and Vanlehn 2002) to keep track of the probabilities
that certain facts and skills are known and use a rule-based
policy to give hints based on this belief state. Others have
employed a data-driven approach (like our learning system)
to train such Bayes Nets from expert trajectories, for in-
stance in an ITS system for number factorization (Manske
and Conati 2005). However, these works did not treat the
problem as a traditional planning problem, instead using a
fixed rule-based policy with the Bayes Net tracking student
state.

Other approaches have considered skill acquisition
through the lens of an MDP. Work on tutoring students for
completing logic proofs (Barnes and Stamper 2008) used an
MDP to model the state of the student and planned out a
policy for when to give hints. However, that work was again
focused on a single type of multi-step problem and used a
tabular representation of the MDP (not a DBN). The clos-
est work to our own is the approach of (Almond 2007), who
used a multi-level DBN (a “bowtie” Net) to model the skill
acquisition process. However, instead of using simple pro-
ficiency rules as we did, that work considered skill profi-
ciencies to be partially observable and used a particle filter-
ing method to link the observations and underlying states.
Also, in that work the DBN parameters and policy were
hand-made (though planning was discussed) and the only
experiment was run on an artificial student. By contrast, our
DBN is learned from data, and planning is used to compute
a policy that we then tested on human subjects. Approaches
in other areas have used similar architectures with multi-
level learned DBNs and planning. Examples include using
learned DBNs to suggest actions to a welfare case worker
(Dekhtyar et al. 2009) and helping dementia patients com-
plete daily tasks (Hoey et al. 2011).

Future Work and Conclusions

This work establishes a general template for curriculum de-
sign using a DBN trained from user trajectories and for
building a policy for issuing hints and problems to students
based on their state of proficiency. We presented case stud-
ies in two artificial domains that contain characteristics of
several real world mathematics and language environments.
In the future, we plan to deploy our system in a large-scale
online tutoring setting, the AnimalWatch ITS (Beal et al.
2010), which has proven to be effective in teaching alge-
bra readiness mathematics, including basic arithmetic, frac-
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tions, variables and expressions, statistics and probability,
and simple geometry (www.animalwatch.org). With roughly
3000 interactions a day, collecting data to train (and re-train)
our models in this setting could be done much faster than in
our current human-subject studies.

When expanding our architecture to this and other real
world domains, a number of design decisions must be made,
which we now briefly outline. First, the skills and facts need
to be identified, a task which may be non-trivial. For in-
stance, in a mathematics domain, while being able to multi-
ply is a skill, determining at what level multiplication prob-
lems should be treated as atomic facts (as with elementary
multiplication tables) versus a general skill, requires some
expertise. Identifying the dependency structure of the do-
main is the next crucial step for the use of our system. The
sparser the pre-requisite links are, the fewer parameters the
system needs to learn, so there is a benefit to modeling as
few dependencies as possible while having enough of them
to make sure the DBN captures the correct conditional prob-
abilities. Automating this construction may be aided by
techniques for mining the DBN structure from the trajec-
tories (Degris, Sigaud, and Wuillemin 2006). The particular
proficiency adjustment rules used will depend on the effec-
tiveness of predicting skill proficiency through observations
of student answers to problems. Choosing the value ranges
for the intermediate nodes, including the maximum sum for
the Aggregate nodes, can also affect the performance of the
system by making parameter space more granular, but re-
quiring more data to train. Finally, because our system has
no autonomous exploration policy during learning, its train-
ing data is biased by whatever policies are used to collect
the initial data, so using a diverse set of policies and allow-
ing human-guided exploration through “choice” policies (as
we used in our study) helps the system generalize and con-
sider a larger set of possible curricula.

In summary, when deploying a system similar to our own
in a real world setting, a number of important design deci-
sions need to be made, including the identification of facts,
skills, dependency structures, proficiency adjustment rules,
value ranges of nodes, and also what policies to use to collect
the initial data. Often these choices involve a trade off be-
tween the granularity of the system and the amount of train-
ing data required.

While the choices above need to be made to deploy our
current system in practical domains, there are also many ex-
tensions of the current system that warrant investigation. For
instance, while we filled in DBN parameters using a “no
change” heuristic in areas where the training data had no
information, methods for active exploration of DBN param-
eters (Kearns and Koller 1999) could be used in a future
system. However, these optimistic agents would try to ex-
plicitly gather data in areas where little information exists,
such as teaching skills when most of their pre-requisites are
are not yet mastered. Thus, there is an inherent tension be-
tween exploitation of the data from the expert policies and
exploration of the parameter space. Two possibilities for
mitigating this effect in the future are (1) training the sys-
tem with software “virtual students” where exploring poli-
cies is far less costly than with human subjects and (2) us-

ing a more restricted form of exploration that does not de-
viate far from the collected data. Another possible exten-
sion is eliminating the assumption that a student’s skill profi-
ciency was essentially observable and based on a set of rules.
Other ITS systems (Conati, Gertner, and Vanlehn 2002;
Almond 2007) have looked instead at modeling a belief state
over the student’s proficiency. This would turn our represen-
tation into a POMDP and significantly complicate planning,
but may result in better policies in the long run.

In this work we have shown how to build and train an ITS
system represented as a factored sequential decision mak-
ing model. Our human-subject trials show that this method
can create unique policies that perform on par with hand-
designed curricula.
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