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Abstract

Human error is one of the most common causes of vul-
nerability in a secure system. However it is often over-
looked when these systems are tested, partly because
human tests are costly and very hard to repeat. We have
developed a community of agents that test secure sys-
tems by running standard windows software while per-
forming collaborative group tasks, mimicking more re-
alistic patterns of communication and traffic, as well as
human fatigue and errors. This system is being deployed
on a large cyber testing range. One key attribute of hu-
mans is flexibility of response in order to achieve their
goals when unexpected events occur. Our agents use re-
active planning within a BDI architecture to flexibly re-
plan if needed. Since the agents are goal-oriented, we
are able to measure the impact of cyber attacks on mis-
sion accomplishment, a more salient measure of protec-
tion than raw penetration. We show experimentally how
the agent teams can be resilient under attacks that are
partly successful, and also how an organizational struc-
ture can lead to emergent properties of the traffic in the
network.

Introduction

As attacks on computer systems grow more common and
more sophisticated, rigorous testing is needed to measure the
effectiveness of tools that protect against or mitigate the ef-
fects of these attacks. Human error is widely recognized as
one of the most important sources of vulnerability in a se-
cure system. In a survey taken in 2006, approximately 60%
of security breaches were attributed to human error by secu-
rity managers (Crawford 2006; Cranor 2008). Humans of-
ten ignore or misunderstand warnings, underestimate dan-
ger, and download infected files or simply disable security
mechanisms because of their slowness or complexity (Whit-
ten and Tygar 1999). Even a computer that is switched off or
disconnected from the network may not be secure: a social
engineering attack may exploit human error by convincing
someone to plug it back in (Mitnick 2002).

Frailties are only one aspect of human behavior that im-
pacts our understanding of security. Compared with soft-
ware systems, humans are flexible and resourceful problem
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solvers, able to find alternate ways to accomplish their tasks
despite failures of resources or services. Different people of-
ten perform the same task in different ways, providing a di-
versification defense from some attacks.

Despite this, human factors are often overlooked when se-
cure systems are tested. One reason for this is the difficulty
and cost of creating repeatable experiments that introduce
human error into large-scale networks. Human subjects are
costly and often require training. Large numbers of subjects
may be required for statistical significance and new groups
of subjects are needed for repeat experiments due to the
learning effect.

We describe an implemented agent system to model hu-
man behavior in networks for more accurate security test-
ing without human subjects. Our agents capture some as-
pects of human behavior that have a significant impact on
network traffic. First, they operate standard windows soft-
ware, using an interface built on VNC by Skaion Corpora-
tion. Second, they work in teams to perform a collaborative
task, producing task-oriented communication and other traf-
fic with a structure that is not captured by typical statisti-
cal traffic generators. Third, they use reactive planning in a
BDI framework (Bratman 1987; Morley and Myers 2004) to
alter their behavior in response to changes in their environ-
ment and respond more flexibly to surprises than is possible
in a completely scripted system. Fourth, they include simple
models of human physiology and emotion to capture aspects
such as degradation in performance due to fatigue or stress.

To our knowledge this is the first agent framework to in-
corporate these elements to test security systems automati-
cally. In addition, when the agents work towards a team goal
we can measure the effectiveness of an attack and of the de-
fenses in terms of changes in the degree of goal satisfac-
tion. This is usually a more important measure than the level
of penetration from the attack or the number of resources
compromised, but it cannot be measured as effectively using
standard approaches with statistical traffic generation and
without agent behavior.

In the next section we introduce a scenario based on an
insider attack and cloud computing and define a small set
of agent types that are combined to provide task-oriented
group behavior in the scenario. The following section de-
scribes our infrastructure that allows large multi-agent sim-
ulations to control desktops on a cyber testing range with
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hundreds of host machines and logs agent behavior for sub-
sequent analysis. Next we describe two experiments. The
first demonstrates the impact on network traffic and team
goal accomplishment of our agents’ ability to plan flexibly
in changing situations. The second demonstrates emerging
complex behavior in the network as a result of the simple be-
haviors of the agents and their organizational structure. We
are continually working to improve this platform with bet-
ter models of emotion and bounded rationality, richer agent
types and standard organization structures. We describe fu-
ture work and discuss some implications of this work after
the evaluation.

Related work

We draw from previous work in human factors in security,
agent based simulation and security testing.

Dourish and Redmiles (Dourish and Redmiles 2002) in-
troduce the concept of “effective security” as a more realistic
measure of the security of a system than a formal evaluation
of the security mechanisms installed. The level of effective
security is almost always below the level of theoretical se-
curity that is technically feasible in a system, largely due to
human error. On the other hand, effective security must be
measured end-to-end, taking into account the entirety of the
system and the purpose it solves. Thus a high level of theo-
retical security may be both expensive and unnecessary.

Cranor (08) proposes a framework for reasoning about the
security of systems with humans in the loop. She models
the human as an information processor based on the warn-
ings science literature (Wogalter 2005). However, this model
only captures the human response to warning messages and
ignores many important aspects of human behavior, such as
the task being performed, collaboration that leads to struc-
tured communication, and stress, emotions and tiredness that
will affect a human’s propensity to make errors. Cranor’s ap-
proach allows a checklist-style evaluation of a security sys-
tem. Blythe et al. (11) model human activity to detect when
a user would benefit most from a security warning and draw
on work in mental models to design effective video-based
warnings (Blythe, Camp, and Garg 2011).

Current state of the art traffic generation systems deployed
in most security testing either replay recorded traffic or use
statistical generators (Wright, Monrose, and Masson 2004).
These approaches lack the notion of the human-in-the-loop
as well as robustness in the face of failure or response to
changes in the environment.

Believable agent-based simulation systems share the goal
of modeling human behavior even if it does not represent
optimal decision-making (Bates 1992; Marsella and Gratch
2009). However, many of them are primarily concerned with
believability to humans through interaction (Tambe et al.
1995). Here, we are concerned with behavior that is suf-
ficiently similar to humans to produce valid simulation re-
sults.

Individual Agents and Teams

Our testing makes use of autonomous agents that collabo-
rate on team tasks to meet their goals. Each individual agent

is unique, with parameters such as tireability drawn from
distributions of random variables. This increases diversity
in the agent population to avoid unrealistic group behaviors
that can occur when all the agents act in the same way.

The agents are implemented following a standard model
of beliefs, desires and intentions (BDI) in the SPARK agent
framework. Each agent maintains a set of intentions, or pro-
cedure instances it is currently executing. At each time cy-
cle, it picks a current intention, and either decomposes it into
subtasks or performs a primitive action in its environment.
It then gathers information about the environment to main-
tain its intentions in the next cycle. This approach allows the
agents to balance time spent deliberating about plans and
executing them.

Each agent interacts with its environment through a VNC-
based controller for virtual machines developed by Skaion
Corporation, and logs in to a virtual machine that controls
a host machine on the system under test. This virtual ma-
chine provides the execution and sensing environment for
the agent. Our agents operate real software on a windows
XP desktop, generating realistic network traffic as they go
about their tasks and other activities.

We created several specialized agent types that handle dif-
ferent tasks in the scenario as we describe below, but first we
describe ranges of beliefs and attributes that are common to
all agent types.

Physiology

Human security actions are strongly influenced by their
emotional and physical state, including hunger and fatigue.
In our current system we model some of the wide body
of research on human performance under varying levels of
fatigue, which is a major factor both in the propensity to
make mistakes and to recognize unexpected behavior in the
environment. We are developing models of emotion and
bounded rationality to be incorporated in future versions of
our agents. We base our models of fatigue on research on
human performance, that shows an exponential drop-off in
performance over time taken on a task. Our agents maintain
a generic fatigue variable that increases towards an asymp-
tote over time and is also increased according to tasks per-
formed. This value is then used in computing the likelihood
of mistakes in most tasks the agent performs. In our current
scenario, agents take a break from work when they exceed
a fatigue threshold, switching to leisure activities that de-
crease the fatigue parameter, and that may be away from the
desktop or may involve web browsing.

Team structure

Many of the attributes and beliefs shared by all agent types
concern their position within the organization, team and so-
cial network. This includes the agent’s supervisor and other
agents from which it may request different kinds of help or
information.

Scenario

Before we describe the individual agent types we created,
we briefly describe the scenario that motivated them and
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that we use throughout this paper. A logistics support team
is collating information from various web sources and stor-
ing it in a cloud-based spreadsheet. Each worker is respon-
sible for a set of spreadsheet cells and communicates with
the team manager about completed tasks. Workers periodi-
cally review values they entered and call IT support to check
for possible faults if they notice any discrepancies. When
they take breaks, the agents may visit other web sites. While
visiting a site for work or leisure, one user succumbs to a
phishing attack that corrupts data on the team spreadsheet.
As other workers notice values being changed, they call IT
and suspend their work until IT reports the problem is re-
solved, when they begin by re-entering the correct data.

Individual agent types

Within any organization there is a natural division of labor
and specialization of agents into distinct roles with distinct
competencies. We divide agents into distinct types, charac-
terized by the set of actions they know how to perform and
ranges of possible competencies over these actions, which
control their likelihood of making mistakes, along with fa-
tigue and stress level. Agents of different types are likely to
share many of the capabilities and all our agents inherit from
a base class. The Scenario Director is present in any sce-
nario. The main agent types in the current scenario are the
Manager Agent, Worker Agent and IT Agent. In some ver-
sions we include cloud administration agents and attacking
agents, but they are not used in this paper. Figure 1 shows a
typical small organization including a Manager, an IT Agent
and several Worker Agents, with links showing recent mes-
sages between agents and indicators for each agent’s current
task load and state (working normally, surprised or resting).

Figure 1: The visualizer displaying a simulation with six
workers, one manager, one IT support agent and one cloud
support agent. Links show recent communications.

The Scenario Director ensures that any pre-determined
events in the scenario unfold as expected. It is an agent in
order to share the agent framework for communication, but
does not model other agent characteristics such as fatigue.

It monitors the scenario and ensures events occur as de-
sired either by enacting them directly or sending messages to
other agents. In our scenario, the director provides Manager
Agents with a range of tasks to perform.

The Manager Agent maintains a set of tasks to be per-
formed by a team of workers, dividing them among work-
ers in its team, monitoring progress and re-assigning tasks
as appropriate. The main task of the Worker Agent is to
process information from various sources and enter it in a
cloud-based spreadsheet, as assigned by the Manager. The
Worker visits a different web site for the information needed
to fill each cell and can ask other Worker Agents to per-
form the task if its tiredness level exceeds a threshold. Work-
ers periodically check that spreadsheet values remain as
they assigned them and will call the IT Agent if the value
has changed. However, with a small probability the worker
makes an error when setting the value. The agent receives a
set of tasks from a Manager Agent, sending a message to the
Manager as each task is completed.

The IT Agent has specialized skills for trouble-shooting
desktops. It responds to calls for assistance from worker
agents and then connects to their virtual machine to in-
vestigate. In our current experiments, computer problems
are simulated and the IT Agents do not have real trouble-
shooting capabilities. However, when a simulated problem
develops, and IT Agent is required to log on to the desk-
top and declare the problem fixed before the worker can re-
sume. Each agent has a parameter for technical competency,
that determines the probability with which an IT Agent will
successfully fix a problem. This treatment is sufficient to ex-
plore the effect of the IT Agent on the overall behavior of a
system under attack, as we show empirically below.

Cyber testing infrastructure
The agent system is designed to support hundreds of agents,
each controlling a separate virtual desktop, although many
agents may themselves run on the same host. The infrastruc-
ture handles both process management (start/stopping pro-
cesses) and communication See Figure 2.

Process Control/Management

Process management is handled by the process Controller.
The Controller receives messages to start or stop a given
process (Middleware, Agent, Logger, Visualizer or Sce-
nario Director) on a host machine. The Controller runs as
a server/service on each host machine that runs any control
process. On starting up, each control process sends a regis-
tration message to the host Controller process. The order in
which the processes are started is determined by a process
called Commander. The Commander sends start/stop con-
trol messages to the Controller in a particular order, waiting
for one to finish before starting another, in order to respect
the dependencies between the processes and ensure all are
running before starting the scenario. Similarly, the Scenario
Director sends message to the Controller to initialize all the
agents. Once the agents are initialized, the Scenario Director
begins the scenario. Control and correct ordering of both ini-
tiation and termination is vital in a large distributed system
such as ours.
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Middleware and Subscribers

We model agent to agent communication by email or phone,
although the infrastructure allows for any number of com-
munication methods. All agent to agent communication is
routed though a process called the Middleware.

The Middleware includes the Router, Directory Service
and Subscription Service. The Router looks up the recipi-
ent Agent in the Directory Service, sends the message to the
Agent, sends a clock tick (preserves order among dependent
messages), and then adds the message to the Subscription
Service dispatch queue. The Directory Service maintains a
list of all the agents on the host machine and any agent it ob-
tained from another Middleware’s Directory Service. When
an agent starts up it will register itself with the Directory
Service on the host machine. Lastly, the Subscription Ser-
vice is used by processes that monitor all communication
and log traffic from all agents on the host machine, such as
the Logger process. A Subscriber process registers with the
Subscription Service, similarly to the Agent Directory Ser-
vice registration.

There are currently three Subscriber processes; The Log-
ger, Visualizer, and Scenario Director (also an agent). The
Logger saves all messages received from the Middleware in
a data base for later analysis. The Visualizer uses a subset of
all the messages to create a live visualization of the scenario,
or can replay a session from the data base.
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Figure 2: Infrastructure

Agent API and Virtual Desktop

Our current agents are implemented in SPARK (Morley and
Myers 2004), although a new framework is under develop-
ment that combines an associative memory with logic-based
action reasoning. An API for the agents to communicate and
broadcast state information is written in Java. Since SPARK

agents are written in Python, they are executed as Java pro-
grams via Jython. When messages are sent between agents,
the message body is a SPARK expression since the Agents
do not support parsing text or other forms. Messages are sent
by the API to the host Middleware.

The agents can either simulate a desktop environment or
use an API to Skaion’s VNC-based controller for virtual
machines. The Skaion controller provides application-level
functions, such as opening a browser window and checking
for email messages, implemented through mouse and key-
board control and with simple image recognition. It is im-
portant that the activities of the agents create realistic net-
work traffic, including communication delays, and operate
software in the same way that human agents would. In cases
where operating such software is beyond the cognitive ca-
pabilities of the agents, we make use of separate semantic
messages in an auxiliary network. For example, when agents
use email to pass information about task completion, a real
email message is sent through the network under test and
at the same time, a message is sent between the agents in
the auxiliary network containing the semantic content of the
message. The recipient may not read the semantic content
until the email arrives, allowing us to model the timing and
network impact of the messages without parsing their con-
tents.

Empirical Results
Our agent system is currently undergoing testing on a cy-
ber testing range using the cloud spreadsheet scenario. We
present here two initial experiments to validate the agents
and explore the potential benefits of incorporating human
simulations. The first considers the resilience of the overall
system to attacks in terms of accomplishing the group mis-
sion. The second explores emergent properties of the overall
network based on simple actions of the agents.

Resilience to attacks

Although human behavior is arguably the most common
source of network vulnerability, humans are also able to re-
spond to unexpected changes in their environment by finding
new ways to achieve their goals. Our agents mimic this ca-
pability in part with a reactive planning component that can
respond to unexpected situations by re-planning to achieve
goals in a different way. The alternative behavior must still
be expressible in the agent’s library of actions, but it may
escape the brittleness of rigidly scripted behavior.

The goal of the reactive planning engine also provides an
opportunity to measure the extent of damage caused by an
attack in terms of partial achievement of the team goals. This
is a more salient measure than the penetration of the attack
or loss of resources. The first experiment demonstrates this
in a simple way by introducing alternative web sites that can
provide the information needed to fill in a cell and indepen-
dently modeling web sites that are knocked out through an
attack. When a Worker Agent encounters a site that is un-
available, its plan to fill in the spreadsheet fails. However, it
is able to find another plan using one of the alternative sites.
There is a time penalty to accessing the first site and switch-
ing plans, but this part of the overall goal can still succeed.
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Figure 3 shows the proportion of spreadsheet cells that
are filled after a fixed time limit when a certain percentage
of the web sites have been disabled, chosen randomly. The
three curves show the proportion filled when there are one,
two or three sites that contain the information needed for
each cell respectively. When 50% of the sites are removed,
6 of 10 goals are achieved on average when there is only one
site available per cell, but 9.5 goals when there are three sites
available. The more sites available, the greater the likelihood
that the agent can find an successful alternative to a plan that
fails.

A set of scripted agents might have the same behavior as
the agents with only one potential site in all cases. If we
were not able to simulate and measure the overall level of
goal achievement, the measure of the attack would simply
be the number of sites made unavailable, failing to benefit
from the agent’s abilities to re-plan.

Figure 3: The proportion of tasks completed by a cut-off
time as a function of the number of web sites that are re-
moved by an attack.

Emergent network behavior

In many cases, complex behavior in network traffic results
from relatively simple behaviors of the individual agents.
This is one reason that agent-based simulations to test secu-
rity have long-term promise compared with statistical traffic
generators. Our second experiment demonstrates this effect
in the scenario we have followed in this paper. In the sce-
nario, all the Worker Agents call one IT Agent when they
notice a problem with the spreadsheet, overloading the IT
Agent and causing a build-up of requests under a range of
conditions for the IT Agent’s speed and rate of tiring. First
we show that the IT Agent’s rate of tiring has a dispropor-
tionate effect on the time that the team takes to complete
the spreadsheet because of the bottle-neck position the agent
holds in the organizational structure. Second, we show that
this leads naturally to an overall network that switches be-
tween inaction and bursts of action, as the IT Agent clears
the way for a critical mass of Worker Agents in between be-
ing repeatedly overwhelmed. This apparently chaotic nature
of the network traffic is again a consequence of the organi-

zation structure for the task.
Figure 4 shows the average cumulative traffic generated

over time for three different configurations of the IT Agent.
In the upper line, the IT Agent never gets tired. In the sec-
ond, it gets tired every forty time steps and takes a break for
X time steps. In the third, it becomes tired every ten steps
and takes a break for Y steps. We use the cumulative traf-
fic as a measure for the amount of work done. When the
agent is tireless, this rises steadily until leveling off as all the
Worker agents achieve their tasks. In the other cases it also
rises quickly at first until reaching a point where the IT agent
rests while a backlog of requests builds up. When the agent
rests every forty steps, it eventually clears the backlog of
problems caused by the insider attack and the team reaches
the maximum cumulative level. When the agent tires every
ten time units, it never clears the backlog and the team’s
progress is very slow. Notice that the graph shows the cu-
mulative work done by the whole team of seven agents, but
it is strongly affected by the tiredness on one agent because
the organizational structure makes the agent critical when
there is an attack.

Figure 4: Average cumulative traffic generation for an agent
team based on different values for the rate of tiring and re-
covery rate for the IT agent.

Figure 5 shows the traffic generated over time in a trial
where the agent tires every forty units. A number of distinct
stages can be seen. Initially there is no traffic as Worker
agents log on and look at their tasks. Then traffic rises
steeply as they begin to fill in cells, only to drop off as they
encounter problems and wait for the IT Agent to check their
desktops. This is followed by short bursts of activity that
eventually become more pronounced as the IT Agent repeat-
edly clears the backlog to allow Workers to continue and
then is overwhelmed by new problems. This kind of behav-
ior, that switches between discrete modes at distinct times,
is difficult for statistical traffic generators to duplicate. In
our approach it arises naturally from agents with relatively
simple rules and their interactions with each other and their
environment.
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Figure 5: The bursty nature of the traffic generated by the
relatively simple agent behaviors of the scenario.

Discussion and Future Work

We presented an agent system designed to test cyber se-
curity systems by modeling human behaviors. In particular
our agents make mistakes, include simple models of human
physiology, work in teams and use reactive planning to re-
spond to their environment and recover from unexpected
events. They generate network traffic and create vulnera-
bilities as they operate standard windows software. We de-
scribed a typical scenario that models an information gath-
ering task. Since the agents adopt a team goal we are able
to use that as a metric of the success of an attack rather than
potentially irrelevant measures of penetration and disabled
resources. We showed empirically that the agents are more
stable to attacks if they can find alternative plans when re-
sources are disabled. We also showed that the team organiza-
tion can be very important and demonstrated complex traffic
patterns that arose from relatively simple agent behavior.

We are improving our agent testing platform in several
ways. We are incorporating computational models of emo-
tion based on appraisal and associative networks (Ortony,
Clore, and Collins 1988; Bower 1981) that will allow us
to better model behavior that has an emotional component,
such as performance under stress or fear. Although sev-
eral computational models of emotion exist (Marsella and
Gratch 2009), they do not integrate both associative mem-
ory and appraisal with cognitive faculties such as planning.
We also plan to incorporate models of bounded rationality,
such as the framing effect and patterns of risk seeking and
aversion (Kahneman and Tversky 1979; Tversky and Kah-
neman 1981), that may explain observed behavior as peo-
ple use security tools. In addition to security testing, we are
also exploring the use of these agents in multi-agent behav-
ioral simulations, e.g. (Zyda, Spraragen, and Ranganathan
2009), where planning capabilities combined with physio-
logical models can lead to more faithful simulations.

To help experimenters rapidly instantiate new experi-
ments we are also creating libraries of typical users whose
response profiles and abilities can be customized. Based

on demonstrations of the importance of the organizational
structure, we also plan to create libraries of typical organi-
zations that are operating in a secure environment. This plat-
form is currently being deployed on a cyber testing range as
a tool for experimenters to create more realistic tests. We
expect to incorporate the lessons from this deployment in
future development of the platform.
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