

A Simulator for Teaching Robotics

Programming Using the iRobot Create

Andrew Hettlinger, Matthew R. Boutell

Department of Computer Science and Software Engineering
Rose-Hulman Institute of Technology

5500 Wabash Ave., Terre Haute, IN 47803
hettliaj@gmail.com, boutell@rose-hulman.edu

Abstract
Past educational robotics research has indicated that the use
of simulators can in
introductory robotics programming courses. In this paper,
we introduce a simulator for the iRobot Create that works
on Windows PCs. It was developed to work with a Python
robotics library and includes an Eclipse plugin, but can
simulate any library that uses the serial Open Interface on
the Create. The platform, library, and simulator are all easy
to use and have been well-received initially by students.

Motivation
The use of robots in education continues to rise. A growing
number of undergraduate institutions are incorporating
robotics into their first programming courses as a means of
attracting students. While robots do draw students, their
hardware adds complexity: they can break and are not as
portable as a computer alone. Fagin and Merkle (2002)
argued that the lack of 24/7 access to robots hindered
student learning because students did not have sufficient
time to practice the write-run-debug feedback loop. They
hypothesized that a simulator would help with this, and a
later paper indicates this was the case (Fagin 2003).
 While exceptions exist (Summet, et al. 2009), robots
often must stay in a lab and be shared by students. A
simulator can offer a level of convenience similar to that
enjoyed by students in other programming courses; that is,
they can do most of their programming wherever they like
whenever they like; say, in their dorm room late at night.
And while the ultimate goal for many students is to
program a physical device, a simulator allows
programming concepts to be decoupled from the hardware
during early phases of development.
 We created a robotics version of the introductory
software development course at our institution in Fall,
2008, as part of a new Robotics minor. We wanted to give
students an exposure to robotics as early as possible in the
curriculum, so needed a platform and library that were easy
to learn and to use, both for the students and the instructor.
For a platform, we chose the iRobot Create. At $280 per

robot including a Bluetooth module, it is much cheaper
than research-grade robots, yet is commercial quality. It
can be programmed by transmitting serial commands using

Open Interface, and libraries have been developed
for various languages to interface with it (Blank, et al.
2004; Dodds 2007; Esposito, et al. 2008). Our first
computing course uses Python. Pyrobot has nice simulators
(Stage, Gazebo, and Pyrobot) and is very versatile, being
cross-platform and with modules for robots of all types,
including the Create. However, we ultimately chose to use
the pyCreate library (Dodds 2007), which works only on
the Create, since we valued simplicity over flexibility.

Simulator Details
A goal of the simulator is to provide a reasonably-realistic
visual simulation while still operating in real-time. While
a 2D simulation would have sufficed for these purposes,
we chose to implement it in 3D
Managed DirectX API. This allowed us to take advantage
of fast hardware rendering and gave us the ability to
implement several viewpoints rather than one flat view.
We created four different views of the virtual robot in its
environment. Follow, with the camera slightly behind and
above the robot (Figure 1), and onboard, with the camera

, are similar to those employed
in many video games. Top-down uses an orthographic
projection. User is customizable, using the mouse to
position the camera at any desired location.
 The environment surrounding the robot is simple but
flexible, consisting of a rectangle with a texture that serves
as the floor and any number of cylinders or rectangular
prisms which serve as obstacles. The location, orientation,
size, and color of each object along with the background
image are defined in xml and can be customized using an
environment editor.

four cliff sensors and the two bump sensors are shown in
Figure 1, with digital values shown graphically in the
lower-left portion of the screen. Sensors for the play and

1915

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

advance buttons are also implemented. The buttons and
their corresponding LED values appear in a different tab.

Figure 1: The simulator interface.

 Our -
level commands such as robot.go(degrees) in the
pyCreate library. PyCreate then translates these commands
into a series of opcodes defined in the Open Interface (OI)
and transmits them to the Create (Figure 2). We made a
small modification to pyCreate to send a duplicate stream
of opcodes to a network socket on which the simulator is
listening. The benefits of using such an approach are
several: communication is asynchronous, a real robot and
the simulator can be controlled simultaneously, and any
external system can be used to drive the simulator. The last
benefit may be the most important. Any system that would
like to control the simulator simply needs to open a socket
on the correct port and send valid opcodes. It is thus
Python-independent, and requires only small modifications
to work other libraries such as MTIC, the MATLAB
toolbox for the Create developed by Esposito, et al. (2008).

Figure 2: System architecture. Planned updates are
shown as dotted lines.

 Due to its implementation in C# using DirectX, the
simulator only runs on Windows-based PCs. However, the
resulting straightforward installation fits our goal of
simplicity for beginners.
 The simulator does a reasonable but inexact job of
modeling the real world. T
fixed, so thresholds must be changed for code developed in
simulation to work with real-world lighting. It does not

have a sophisticated physics engine to account for wheel

However, our goal was never to replace the

from using the robot to test! But we do want to provide
them with an alternative during early development. So
while they might need to tune thresholds using the robot,
they can perform the time consuming and sometimes-
frustrating aspect of development for beginners (dealing
with logic errors) at their convenience using the simulator.

Discussion and Conclusion
The simulator was introduced this Fall and was received
well by students. One student in particular who had trouble
connecting to the robot with his Bluetooth module
commented that he loved using the simulator because he
was still able to continue developing instead of relying on

. The simulator is also currently being
used in a course at Cornell University.
 Simulators can provide a level of convenience to
students, decoupling the physical robot from the early
stages of development. We have developed a 3D,
Windows-based simulator for the Create robot. We chose
this platform and library due to its simplicity, and
developed the simulator with the same goal in mind. We
conjecture that other educators with this same goal would
likewise benefit from this simulator. The simulator is
available at http://www.rose-hulman.edu/class/csse/
resources/Robotics/InstallingCreateSimulator.htm.
 Future work includes an evaluation of students use of
the simulator and extending it to libraries in other
languages such as MTIC.

References
Blank, D.S.; Kumar, D.; Meeden, L. & Yanco, H. 2004.
Pyro: A Python-based Versatile Programming
Environment for Teaching Robotics. J. Educ. Resour.
Comput., 4(3).

Dodds, Z. pyCreate. 2007. www.cs.hmc.edu/~dodds
/erdos/old.html. Copyright 2007.

Esposito, J. M., Barton, O.; and Koehler J. 2008. Matlab
Toolbox for the Create Robot. www.usna.edu/Users
/weapsys/esposito/roomba.matlab/. Copyright 2008.

B. Fagin. 2003. Ada/mindstorms 3.0: A computational
environment for introductory robotics and programming.
IEEE Robotics and Automation Magazine, 10(2):19-24.

Fagin, B. S. and Merkle, L. 2002. Quantitative analysis of
the effects of robots on introductory Computer Science
education. J. Educ. Resour. Comput. 2(4).

Summet, J; Kumar, D; O'Hara, K; Walker, D; Ni, L; Blank,
D; Balch, T. 2009. Personalizing CS1 with Robots. Proc.
ACM SIGCSE. Chattanooga, TN USA.

Student

pyCreate

OI (on Create) Simulator

MTIC
Other

libraries

opcodes

1916

