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Abstract
Labor monitoring is crucial in modern health care, as it can
be used to detect (and help avoid) significant problems with
the fetus. In this paper we focus on hypoxia (or oxygen de-
privation), a very serious condition that can arise from differ-
ent pathologies and can lead to life-long disability and death.
We present a novel approach to hypoxia detection based on
recordings of the uterine pressure and fetal heart rate, which
are routinely monitored during labor. The key idea is to learn
models of the fetal response to signals from its environment,
using time series data recorded during labor. Then, we use the
parameters of these models as attributes in a binary classifi-
cation problem. A majority vote over several periods is taken
to provide the current label for the fetus. We use a unique
database of real clinical recordings, both from normal and
pathological cases. Our approach classifies correctly more
than half the pathological cases, 1.5 hours before delivery.
These are cases that were missed by clinicians; early detec-
tion of this type would have allowed the physician to perform
a Caesarean section, possibly avoiding the negative outcome.

Introduction
The lifelong disability that can result from oxygen depri-
vation during childbirth is rare but devastating for families,
clinicians and the health-care system. Between 1 and 7 in
1000 fetuses experience oxygen deprivation during labour
that is severe enough to cause fetal death or brain injury (Sa-
phier et al. 1998); the range of this estimate reflects con-
siderable regional variation and some clinical debate on the
definition of brain injury. The main source of information
used by clinicians to assess the fetal state during labor is
cardiotocography (CTG), which measures maternal uterine
pressure (UP) and fetal heart rate (FHR). Clinicians look at
these signals and use visual pattern recognition and their
prior experience to decide whether the fetus is in distress
and to pick an appropriate course of action (such as perform-
ing a Caesarian secton). However, there is great variability
among physicians in terms of how they perform this task
(Parer et al. 2006). Furthermore, because signicant hypoxia
is rare, false alarms are common, leading physicians to dis-
regard truly abnormal signals. Indeed, approximately 50%
of birth-related brain injuries are deemed preventable, with
incorrect CTG interpretation leading the list of causes (Free-
man, Garite, and Nageotte 2003). The social costs of such
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errors are massive: intra-partum care generates the most fre-
quent malpractice claims and the greatest liability costs of
all medical specialties (Saphier et al. 1998). Thus, there is
great motivation to find better methods to discriminate be-
tween healthy and hypoxic conditions.

In this paper, we summarize a novel approach to this
problem, which relies heavily on machine learning meth-
ods; a more detailed account of the methods is presented in
two biomedical journal publications (Warrick et al. 2009;
2010) as well as in (Warrick 2010). This paper is intended
for an AI audience; we believe that some of the features of
the system we designed could be useful for other AI medical
monitoring systems, as well as (more generally) for applica-
tions analyzing time series data.

We built an automated detector of fetal distress by using
data from normal and pathological cases. We had access to a
unique database, which contains labor monitoring data from
an unusually large number of births; a significant number of
the cases are pathological examples (well above the natural
frequency of occurrence of such problems). All the data has
been collected under clinical conditions; as a result, it is very
noisy. To handle this problem, we modeled the fetal heart
rate signal through several components. The parameters of
these models, which have been learned from data, are then
used to build a classifier for a given time period. Because the
state of the fetus can change during labor, classification is
performed repeatedly on data segments of limited duration.
A majority vote of recent labels determines if and when a
fetus is considered pathological.

The paper is organized as follows. First, we give some
background on the problem and type of data used. Then, we
describe our general approach. We present empirical results
and a discussion of the main findings, as well as the next
steps towards clinical deployment.

Background
Clinicians’ interpretation of intra-partum CTG signals relies
on the temporary decreases in FHR (FHR decelerations) in
response to uterine contractions. FHR decelerations are due
mainly to two contraction-induced events: 1) umbilical-cord
compression and 2) a decrease in oxygen delivery through
an impaired utero-placental unit. There is general consensus
that deceleration depth, frequency and timing with respect
to contractions are indicators of both the insult and the abil-
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Figure 1: CTG signal over 10 minutes, including 4
contraction-deceleration pairs. (a) UP signal with contrac-
tion onsets (C) indicated. (b) FHR signal with deceleration
onsets (D) indicated.

ity of the fetus to withstand it. Figure 1 shows an example
CTG during 10 minutes. Contractions and decelerations are
marked by an expert.

There have been numerous studies in the literature that
describe fetal-state assessment based on computerized inter-
pretation of the CTG signal, e.g.(Georgoulas, Stylios, and
Groumpos 2006a; 2006b; Ozyilmaz and Yildirim 2004). By
far the majority of these have been based on a paradigm of
detection and estimation of attributes selected to mirror the
visual interpretation of the obstetrician, or to reflect assumed
physiological events. For example, one can attempt to detect
the start and end of a contraction, the start and end of the fol-
lowing deceleration, the depth of the deceleration, etc. (Sig-
norini et al. 2003). Georgoulas et al. (2006a,b) use principal
component analysis and support vector machines on top of
features computed from the heart signal in order to provide
a classification for the fetus. Ozyilmaz and Yildirim (2004)
use neural networks and radial basis function with features
of the heart signal and the mother gestational age. In sim-
ilar work in the past (Warrick, Hamilton, and Macieszczak
2005) we have also used combinations of neural networks
and feature extraction.

Unfortunately, several problems hamper the use of such
features. First, the UP and FHR signals are very noisy, espe-
cially when collected under clinical conditions, as is the case
for our data. Because the sensors are attached to the mater-
nal abdomen, there is often a problem of sensor contact or
missing data when the mother wishes to be more mobile and
is temporarily detached from monitoring. These sensor dis-
turbances result in frequent artifacts, where the signal drops
to a lower value. The FHR can also include interference
from the maternal heart rate, causing the signal to drop to a
lower value.

Other problems arise from the fact that detecting events
like the start of a deceleration is very hard to do automat-
ically. The response of the fetus is not always the same:
while most of the time, a contraction is followed by a de-
celeration, sometimes it may actually be followed by an ac-
celeration. Furthermore, a missed detection can throw off
the timing information for future contractions and skew all
subsequent results.

Finally (and perhaps most importantly) looking at features
of the FHR in isolation does not give information on how the

fetus is reacting to the labor. Pathology is often indicated by
the response of the fetus to contractions; but the relationship
between the UP and FHR is not captured explicitly in the
FHR features.

Because of the problems attributed to feature detection,
we decided to build models of the CTG which are structured
based on clinical knowledge, and in which we model sep-
arately the input-output relationship between UP and FHR,
as well as characteristics of the FHR signal itself. The pa-
rameters of the models are learned form data. There are two
potential advantages to this approach. First, we avoid the
difficulty of trying to mimic visual interpretation. Second,
it is much easier to detect changes in the state of the fe-
tus as labor progresses, rather than trying to refer to some
“golden standard” as is often done in the feature-based ap-
proach. This can allow detection to be more attuned to the
individual characteristics of each labor. Once we have the
model parameters, we will use these as features for a su-
pervised learning mechanism that can discriminate between
normal and hypoxic conditions.

Data description
We used a database consisting of 264 intrapartum CTG
recordings for pregnancies having a birth gestational age
greater than 36 weeks and having no known genetic mal-
formations. The majority of the recordings were from nor-
mal fetuses (221 cases); the rest were severely pathologi-
cal. This proportion of pathological cases was much higher
than their natural incidence (Freeman, Garite, and Nageotte
2003). The normal cases were collected from a large univer-
sity hospital in an urban area, which always monitors CTG
during labor. The very low natural incidence of pathology
necessitated collecting cases from a number of hospitals and
medico-legal files. All CTG records comprised at least three
hours of recording. We note that this is a larger database
than other previous studies, e.g. (Georgoulas, Stylios, and
Groumpos 2006a; 2006b; Ozyilmaz and Yildirim 2004).

Data collection was performed by clinicians using stan-
dard clinical fetal monitors to acquire the CTG. The mon-
itors reported at uniform sampling rates of 4 Hz for FHR
(measured in beats per minute (bpm)) and 1 Hz for UP (mea-
sured in mmHg), which we up-sampled to 4 Hz by zero-
insertion and low-pass filtering. In the majority of cases, the
UP or FHR sensors were attached to the maternal abdomen;
the FHR was acquired from an ultrasound probe and the UP
was acquired by tocography. In a few exceptional cases,
they were acquired internally via an intra-uterine (IU) probe
and/or a fetal scalp electrode.

Each example was labelled by the outcome at birth, as
measured both by blood oxygen level and signs of neuro-
logical impairment. Preprocessing was needed to deal with
loss of sensor contact, which causes a sharp drop in the sig-
nal followed by a sharp increase bach to normal. We used a
Schmitt trigger, which defines separate detection thresholds
for down-going and up-going transitions (see (Warrick et al.
2009) for details). Once dropouts are eliminated, the signal
becomes a set of segments. If the dropout lasted less than
15 seconds, we used linear interpolation to re-connect these
segments. Otherwise, they were left separate. Note that the
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data that we had to work with is particularly messy - for ex-
ample some of the traces were obtained by digitizing paper
printouts, rather than by saving the sensor signal directly.

System architecture
Conceptually, the fetal heart rate can be viewed as the result
of three main factors: 1) baseline heart rate (producing aver-
age cardiac output); 2) response to maternal uterine contrac-
tions; and 3) variability due to sympathetic-parasympathetic
modulation. Consequently, we model the fetal heart rate f
as the sum of three components: f = fBL + fSI + fHRV . This
decomposition is unique to our approach, compared to stan-
dard methods that extract FHR features. We now explain
each term in more detail.

The baseline signal fBL is obtained by low-pass filtering
the FHR and computing a linear trend over the data window.

The response to contraction is modeled using a non-
parametric linear model. More precisely, let the uterine pres-
sure and fetal heart rate at time n be denoted by un and fn
respectively. We modeled fn as a convolution:

fn ≈
M−1

i=0
(hi t)un−d−i

where t is the sampling period and hi is a set of coefficients
or parameters. From the point of view of machine learning,
this is a linear model, in which the output of the system is
computed by a linear combination of the inputs to the sys-
tem over a history window. In signal processing, it is called
an impulse response function (IRF). Two important parame-
ters are the number of input values used in the computation,
or the memory size M, and the delay d; together, d and M
define the window of input signal values that will be used to
estimate the output. Intuitively, for a causal system d should
be positive (i.e. the output will be determined by the val-
ues of the past input). However, for our problem there is
an additional measurement delay introduced by the sensor
measuring the uterine pressure. Hence, since the input u is
recorded by this sensor with a possible measurement delay,
d may be positive or negative.

For fixed values of M and d, the parameters hi can be de-
termined simply by least-squares estimation. However, de-
termining the best M and d is problematic. If the system gen-
erating the data were stationary, we would expect that using
more samples to estimate the output would yield lower error
on the training data. However, the problem we are facing
is non-stationary: the state of the fetus typically degrades
over time, due to the effort of labor. This suggests that a
shorter length of data should be considered, to avoid non-
stationarity. To resolve this trade-off, we extracted 20-min
epochs with 10-min overlap between successive epochs; this
epoch length is much longer than the typical FHR decelera-
tion response to a contraction (i.e., 1-2 min). We extracted
as many such epochs as possible starting from the beginning
of a clean (artifact-free) segment; to include any remaining
data at the end of the segment (i.e., less than 10 min), the
overlap was increased for the last epoch. The overlap itself
was motivated by a desired to generate as much data as pos-
sible, while maintaining the correlations between epochs at
a reasonable level.

Figure 2: Order selection for a pathological example. (a)
Principal components of the IRF (dashed) and the recon-
structed signal (solid) for memory length from 1 to 6. (b)
VAF and penalty measure (right)

Within these data restrictions, we still want to determine a
good model size. The main figure of merit that we used for
a model was the variance-accounted-for. Let f be a vector of
FHR samples from a segment and U be the corresponding
input matrix. The error is given by:

e = f−Uh

The variance-accounted-for is given by:

%VAF = 100×
(

1− e
2

f 2

)
where 2

e and 2
f are the variances of the error and the out-

put signal, respectively. Ideally, this figure should be close
to 100% (signaling that all the variability in the signal is ac-
counted for by the model).

Increasing M typically yields better VAF figures, but this
may be due to overfitting (which is a big problem in this
task, due to the amount of noise). We use two mechanisms
to avoid overfitting. First, after we obtain the least-squares
fit for the coefficients, we use Principal Component Analysis
(PCA) on the set of coefficients to reduce the dimensionality.
Intuitively, this eliminates parameters that capture noise.

Furthermore, we need to limit the size of the memory M.
To do this, we use the minimum description length (MDL)
principle and add to the squared error a penalty term, propor-
tional to the sum of the absolute differences of the consec-
utive coefficients. If this sum is high, the signal oscillates
a lot, which is an indication of noise. To give an intuition
of the effect of these choices, in Figure 2 we plot, on the
left, the first 6 principal components obtained for a particular
pathological case. Note that as more components are added,
the estimated output signal contains an increasing amount of
high-frequency oscillations. Intuitively, this means that in
the beginning we are capturing true influences, but later on
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Figure 3: UP-FHR model. From top to bottom: raw in-
put UP; pre-processed UP; raw output FHR; preprocessed
(black) and predicted (red) output FHR; final impulse re-
sponse function. The IRF delay d was 20s, the gain G was
−0.32bpm/mmHg and the VAF of the model was 44.0.

we start to capture noise. The VAF continues to improve, but
this improvement is marginal. Our MDL penalty increases
with the amount of oscillations; using it forces the optimiza-
tion to choose a lower-order model (order 2, in this case,
corresponding to the point marked with a blue star), even
if the higher-order models fit the observed data marginally
better.

Once the memory parameter M is determined, the delay
parameter d of the model is selected by a simple search over
a range of values that were picked in an acceptable clinical
range (Warrick et al. 2009).

From the clinical point of view, another important feature
is the “strength” of the response of the fetus to contractions.
To capture this type of information, we estimate a third pa-
rameter, for each model, the gain, which is the sum of the
coefficients:

G =
i

hi

Intuitively, the larger the gain, the stronger the response to
contractions will be. If the gain is close to 0, there is almost
no response to contractions.

An example of data, the model, and the IRF (i.e. coef-
ficients obtained) are shown in Figure 3. The FHR signal
is reconstructed very well, but the high-frequency variabil-
ity is not captured by this model. This is to be expected,
because the contraction frequency is typically low; hence,
the response to contractions must (by definition) generate a
low-frequency signal.

The high-frequency content of the FHR is clinically
viewed as the result of the modulating influence of the cen-
tral nervous system; In order to capture it, we high-pass fil-
ter the signal and use an autoregressive model to predict the
high-passed signal. The model is also linear, but computes
fn as function of fn−1 . . . fn−d−M . We use the same MDL
principle to determine the length of the model. The details
are very similar to those described so far, and are described
in (Warrick et al., 2009). Note that this high-frequency com-
ponent is biologically due to the fetal nervous system, so this
model captures information that is complementary to the in-
fluence of the UP.

With this setup, we are now ready to use the data set for
supervised learning. We labelled each segment with the fetal
outcome at birth. This is an approximation, because the fe-
tus may have started off well and degraded with time. How-
ever, this is the only reliable information available. In or-
der to determine what model parameters to use as input to
the classifier, we first did a statistical analysis to determine
which parameters show statistically significant differences
between normal and hypoxic fetuses. For these tests, pa-
rameters were considered in isolation. We found that the
following parameters showed significant differences:
• The offset of the baseline heart rate
• The gain G and the delay d, from the UP-FHR models
• Two measures related to the power-spectrum for the heart-

rate variability
We used these features as attributes for classification with
support vector machines (SVM). We used a standard SVM
with a Gaussian kernel, because of its guarantees against
overfitting. While the space do not permit further discus-
sion of the machine learning methods, we refer the reader to
(Bishop 2006) for a detailed explanation of all methods used
(SVM, PCA etc).

Empirical Results
We performed 10-fold cross-validation, ensuring that all the
data for a particular labor would be in either the training set
or the test set. Note that each labor generates between 3 and
18 periods of data, so there are in effect multiple instances
corresponding to each data case. It is therefore imperative
to make sure that instances from the same case are not used
both in the training and in the test set, so as not to bias re-
sults. All performance measures are reported on the test set.

Figure 4 shows all the instances (including the support
vectors outlined in black) from one fold of training data, the
learned decision function (as shown by shades of gold
and turquoise), and the decision boundary ( = 0) based on
the system identication feature set. We note that there are
two regions in which instances are classified as pathologi-
cal; the most heavily populated (lower right) is characterized
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Figure 4: SVM decision boundary for one fold of the system
identification classifier. Normal examples are represented in
green and pathological ones in red. The support vectors are
outlined in black. The solid red line represents the trajectory
of a pathological case not present in the training data, which
transitions form normal to pathological.

by long delay and large negative gain; a smaller population
in the upper left region are instances characterized by short
delay and large positive gain. Between these pathological
regions there is a region in which instances are classied as
normal. At the boundaries of these regions are the support
vectors, where classication is less certain. The large pro-
portion of support vectors (684 of 1499 training samples)
indicates that the classication problem is difficult. The tra-
jectory of one pathological case, not included in the training
set, is shown by the red arrows. It began in one of the sup-
port vector regions, in which intuitively classication is some-
what uncertain, then moved into the normal region, passed
through the other support vector region and finally ended in
the pathological region. This suggests that this case deterio-
rated from a normal to a pathological state over time. We ob-
served other pathological cases with similar behaviour. We
also observed normal cases that started normal and ended
close to or within the pathological region near delivery.

The non-stationarity of the fetal state poses several chal-
lenges to the detection of pathology. Additionally, the model
parameters are also non-stationary, reflecting the increas-
ing intensity of labor (which puts stress on all babies, even
healthy ones). This creates problems for per-epoch classi-
cation, meaning that several instances (epochs) may be mis-
labelled. However, this is the best that can be done given
the data we have, since the true state is not observed during
labour and delivery.

We addressed this problem by introducing a detector of
pathology defined by a threshold of accumulated pathologi-
cal classifications. The detector avoids the confusion of de-
cision oscillations by allowing for at most one transition,
from a normal to a pathological decision. Moreover, the

Figure 5: (a) Pathological and (b) normal detection over
time for selected system identication (S1 and S2, red cir-
cles), baseline- HRV(B1 and B2, blue triangles) and com-
bined(C1 and C2, black squares) detectors. The cumulative
count is indicated by open (threshold=1) and filled (thresh-
old=2) markers. The vertical dotted lines indicate the time of
90 minutes before delivery. The horizontal dotted lines indi-
cate the 50% pathological and 90%normal detection levels.

detector can intuitively remove some of the noise in the
classifications of individual epochs. The detectors used the
history of per-epoch classifications for each fetus to detect
pathology. Figure 5 shows the performance of the 6 de-
tectors in terms of pathological detection (sensitivity) and
normal detection (specificity) over time. Higher detection
is better for both measures. Error bars are omitted because
there was little plotting overlap and a clear ranking can be
observed. Six detectors were examined using different per-
epoch classifiers and thresholds. Only thresholds 1 and 2 are
shown because detectors with higher thresholds performed
worse. It is apparent that pathological detection is more
conservative (i.e., delayed, as indicated by a shift to the
right) for the higher threshold. We focus on C1 and C2,
which use classifiers based on both features provided by the
input-output model, and the baseline/heart rate variability
measures. These combined detectors identified pathologi-
cal cases earlier and consistently better than equivalent in-
dividual detectors. Selecting the best performing detector
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must consider both performance measures. We consider C2
to be the best detector because it had close to the best detec-
tion of pathological cases and close to the best false positive
rates, especially in the first half of the 3-hour record, when
a clinical response is most important. C2 detected half of
the pathological cases with a false positive rate of 7.5% at
epoch -10 (i.e., roughly one hour and forty minutes before
the original time of delivery). In comparison, while C1 had
that best detection of pathological cases, it had the worst
false positive rates.

Discussion
The approach we proposed in this paper detected correctly
half of the pathological cases, with acceptable false positive
rates (7.5%), early enough to permit clinical intervention.
This detector was superior to alternatives using either fea-
ture set by itself. By definition, the pathological cases in
our database had been missed by clinicians; therefore, this
level of performance is quite significant. It is interesting that
this corresponds well to the clinical fact that approximately
50% of birth-related brain injuries are deemed preventable.
Timing of detection is very important given that fetal state
evolves; detecting fetal distress near the time of delivery has
less potential to improve clinical outcomes, while an ad-
vance warning of one hour and forty minutes is very sig-
nicant clinically. This is a relatively long time for treatment
to occur and improve outcome; typically, the interval be-
tween a decision to intervene and Cesarian birth is less than
30 minutes. Furthermore, the cost of believing these deci-
sions (i.e., a rate of unnecessary Cesarian sections of 7.5%)
is acceptable clinically.

In current work, we are assessing the performance of our
system against a hand-crafted expert system based on best
clinical practices; the preliminary results show that our sys-
tem outperforms the hand-crafted one, having similar detec-
tion rates but significantly fewer false positives. We are also
studying a set of “intermediate” examples contained in the
database, in which the oxygen level at birth was in a prob-
lematic range, but no severe pathology was detected. These
cases appear to be “close calls”, in which birth occurred just
in time to avoid a bad outcome. By studying these exam-
ples, we hope to understand better the timing of pathology
and adjust our detection mechanism accordingly.

This system is now being pushed to the clinical setting.
A unique feature of our approach compared to others is the
ability to use data recorded from standard clinical monitors,
which would be gathered anyway during labor at any hospi-
tal. As a result, deployment does not require any new hard-
ware, merely a simple addition to the software system that
is already used by clinical monitors.

Another important feature which was taken into account
throughout the design process is the ability to classify data
as it arrives in real-time. This approach can process data
directly as it arrives from the sensors. Moreover, since we
do not use just a static classifier, but a detector, we can flag
problems with fetal oxygenation as they arise, in a timely
manner.

However, a crucial aspect that remains to be solved is the
design of a successful interface between the system and the

medical staff. While in this paper we reported information
that shows a large range of the sensitivity-specificity trade-
off spectrum, in a deployed application one has to choose a
particular value of sensitivity and stick with it. This choice
is crucial in practice: if the system raises too many alarms,
it will be turned off or ignored by medical personnel. On
the other hand, the system needs to be able to detect prob-
lematic cases well. We are currently working with a team
of doctors and other medical personnel to determine how
to best choose this trade-off (and they are very enthusiastic
about this approach). We also need to note that a lengthy
formal approval process needs to be followed for a system
like this to be used in hospitals, including clinical trials in
which data on its effectiveness is gathered.
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