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Abstract
Non-invasive identity inference in the home environment is a
very challenging problem. A practical solution to the problem
could have far reaching implications in many industries, such
as home entertainment. In this work, we consider the problem
of identity inference using a TV remote control. In particular,
we address two challenges that have so far prevented the work
of Chang et al. (2009) from being applied in a home entertain-
ment system. First, we show how to learn the patterns of TV
remote controls incrementally and online. Second, we gener-
alize our results to partially labeled data. To achieve our goal,
we use state-of-the-art methods for max-margin learning and
online convex programming. Our solution is efficient, runs in
real time, and comes with theoretical guarantees. It performs
well in practice and we demonstrate this on 4 datasets of 2 to
4 people.

Introduction
Providing multimedia content in a personalized TV environ-
ment that aligns the most with the interests of its consumers
is a challenging problem for both service providers and con-
tent developers. This problem becomes even more challeng-
ing in families, where the recognition of individual members
is highly desirable. The goal is to provide the best personal-
ized experience for various multimedia contents, such as TV,
on-demand programming, interactive media, targeted adver-
tising, online gaming, and many others.

In our paper, we discuss practical challenges in building a
non-invasive system for identifying TV viewers. The system
minimizes the need of the TV viewers to log into their enter-
tainment profiles, or being identified by an invasive method,
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such as a camera combined with face recognition. Our solu-
tion is designed as follows. Whenever the TV viewer reveals
identity, we use the corresponding remote control data, such
as a sequence of button presses and accelerometer readings,
to train the predictor of the person. When the identity of the
viewer is unknown, we infer the identity based on the remote
control data. Although our solution is specific to the remote
control domain, note that many ideas in the paper generalize
beyond it. In particular, our work is a prime example of how
to turn an offline and fully-supervised solution into an online
solution on partially labeled data.

The basis of our engineering efforts relies on the paper of
Chang et al. (2009), which employs support vector machines
(SVMs) and max-margin Markov networks (M3Ns) (Taskar,
Guestrin, and Koller 2004) to infer the identify of TV remote
control users. We address two main problems that had so far
prevented this work from being implemented in a home en-
tertainment system. First, the original methodology assumes
completely labeled data. Unfortunately, TV viewers usually
provide very little feedback about their identity. Second, the
approach of Chang et al. (2009) does not allow for an incre-
mental improvement of learned predictors. This is necessary
since remote control data are usually unavailable in advance,
and only become sporadically available as time progresses.

Considering our minimal invasive system setup, in which
we rarely observe labeled data, we show that there is simply
not enough data to build a reasonably good manifold, which
can be used by semi-supervised learning algorithms. In turn,
we focus on supervised learning only and try to evaluate how
many labeled examples are needed to learn good predictors.
First, we answer this question in the offline setting. Second,
we show how to learn online from completely labeled data.
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Household Participants Sessions
1 4 458
2 2 124
3 3 28
4 2 90
5 4 340

Table 1: Households statistics.

Finally, we relax the assumption on completely labeled data.
One of our results is that the identity of remote control users
can be inferred with an acceptably high accuracy even when
only 20 percent of data are labeled.

These results are obtained using state-of-the-art methods
for online convex programming (Zinkevich 2003). Although
our solution is simple and learned online, the accuracy of the
solution is often comparable to Chang et al. (2009). To fur-
ther improve the solution, we propose a new way of training
max-margin Markov networks online (Ratliff, Bagnell, and
Zinkevich 2007). The algorithm runs in real time and can be
implemented on a commercial platform. Finally, both of our
solutions are comprehensively evaluated on 4 remote control
datasets of 2 to 4 people, and compared to online and offline
majority class baselines.

The following notation is used in the paper. The symbols
xt and yt ∈ {−1, 1} denote the t-th data point and its label,
respectively. The data points xt are divided into labeled and
unlabeled sets, l and u, and the labels yt are observed for the
labeled set only. The cardinality of the labeled and unlabeled
sets is nl = |l| and nu = |u|, respectively, and T = nl + nu

denotes the total number of training examples.

Remote control dataset
Our data set consists of data collected on five households for
a period of one to three weeks in which the number of users
for the households varied between two and four. This is the
same dataset featured in the Chang et al. (2009) paper. Each
household had a data collection system that consisted of a
tri-axis accelerometer attached to a TV remote control, the
corresponding accelerometer receiver, a universal infrared
receiver to capture button presses from the remote control,
and a laptop to which the receivers were connected. The
laptop logged and time stamped the data from the sensors
using 100 nanoseconds resolution.

For our analysis, all data of interest revolved around the
remote control activity in the form of button press selections.
Since we seek to associate combined accelerometer and but-
ton readings to individual users, we concern ourselves with
the behaviors just before and just after each of the button
presses. To study just how much before and how much af-
ter, we implement four different capture windows at 0.5, 1,
2, 4 seconds with respect to the button press. The windows
were designed to help capture the hand motions preceding,
centered, and succeeding each button press. We believe the
variety in window sizes is sufficient to capture the unique-
ness in hand motions for each of the users.

Since data was collected using 100 nanoseconds reso-
lution, the data contained within each of those windows

were used to generate the features that defined each but-
ton press instance. Some of the features associated with the
accelerometer data include: energy, fundamental frequency,
range, mean, and variance for each of the axes, as well as
correlation among each pair of axes. Some of the features
associated with the infrared button signal from the remote
control include the button code, press duration and number
of times the button code was sequentially transmitted.

In all, a total of 372 combined features defined each but-
ton press instance. The time stamped instances were then
group into sessions. A session represents the periods of time
in which there is continuous remote control activity. A ses-
sion ends when it is determined that the remote control still
idle. Table 1 illustrates the total number of sessions for each
household. Notice that because of the scarcity of sessions,
Household 3 was not considered in this study.

For our experiments, all the instances corresponding to
the same session are aggregated into a session-level instance
representation as the mean for the session. Button that were
rarely use were discarded before aggregation. We then nor-
malize with respect to all sessions.

Algorithms
This section reviews online and offline learning algorithms,
which are used in the experimental section.

Supervised max-margin learning
Support vector machines (SVMs) (Vapnik 1995) are a stan-
dard algorithm for learning max-margin discriminators. The
learning problem is formulated as:

min
f∈HK

1
T

T∑
t=1

V (f,xt, yt) + γ ‖f‖2K , (1)

where V (f,x, y) = max{1−yf(x), 0} represents the hinge
loss, f is a function from a reproducing kernel Hilbert space
(RKHS)HK , and ‖·‖K is the RKHS norm that measures the
complexity of f . The tradeoff between the regularization of
f and minimizing the losses V (f,xt, yt) is controlled by the
parameter γ. In all experiments, γ = 0.01.

The temporal structure of our problem allows for improv-
ing SVM predictions (Chang, Hightower, and Kveton 2009).
Chang et al. (2009) applied max-margin Markov networks to
capture this structure and reported significant improvements
over SVMs. In this work, we propose a much simpler solu-
tion. The predictions ŷt =sgn(f(xt)) are smoothed out over
time as:

(ỹ1, . . . , ỹT ) = arg max
k1,...,kT{

φ
T−1∑
i=1

{ki = ki+1} +

T∑
i=1

{sgn(f(xi)) = ki} |f(xi)|

}
, (2)

where {·} is an indicator and φ determines the importance
of label smoothing. The higher the value of the parameter φ,
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Figure 1: Comparison of 7 solutions on 4 remote control datasets. From left to right, we report the accuracy of the majority class
baseline, RBF SVMs, RBF M3Ns, cubic SVMs, cubic M3Ns, linear SVMs, and linear M3Ns.

the more the labels ỹt are smoothed over time. When φ = 0,
the predictions ỹ1, . . . , ỹT are identical to the predictions of
the corresponding SVM. In all experiments, φ = 1.

When compared to M3Ns, the smoothed-out predictor has
one significant advantage. It is much easier to learn because
it reuses the SVM decision boundary and the only additional
parameter is φ. Due to its simplicity, the predictor is unlikely
to be as good as the M3Ns of Chang et al. (2009). However,
note that it models the same kind of dependencies. Hence, in
the rest of the paper, we refer to it informally as an M3N.

Semi-supervised max-margin learning
Manifold regularization of SVMs (Belkin, Niyogi, and Sind-
hwani 2006) is one way of combining max-margin learning
and semi-supervised learning on graphs. This learning prob-
lem is formulated as:

min
f∈HK

1
nl

∑
t∈l

V (f,xt, yt) + γ ‖f‖2K + γuf TLf , (3)

where f = (f(x1), . . . , f(xT )) and L denotes the Laplacian
of the data adjacency graph, which is represented by a matrix
W of pairwise similaritieswij . The similaritieswij are often
computed as:

wij = exp[−‖xi − xj‖22 /(2Kσ
2)], (4)

where K is the number of features and the heat parameter σ
denotes the mean of their standard deviations. This approach
is adopted in the rest of the paper.

The scalar γu controls the importance of unlabeled exam-
ples. When γu = 0, the objective of manifold regularization
(3) is identical to the objective of SVMs (1).

Online max-margin learning
Online learning of SVMs (1) can be formulated as an online
convex programming problem.

Online convex programming (Zinkevich 2003) involves a
convex feasible setF ⊂ RK and a sequence of convex func-
tions ct : F → R. At each time step t, we choose an action
ft ∈ F based on the past functions c1, . . . , ct−1 and actions
f1, . . . , ft−1, and the goal is to minimize the regret:

T∑
t=1

ct(ft)−min
f∈F

T∑
t=1

ct(f). (5)

The above regret can be minimized on the order of O(
√
T )

by the gradient update:

ft+1 = P (ft + η∇ct(ft)), (6)

where η =
√
T is a learning rate, ∇ct(ft) is the gradient of

the function ct at the point ft, and P (·) is a projection to the
feasible set F . When the cost function is defined as:

ct(f) = V (f,xt, yt) + γ ‖f‖2K , (7)

our gradient update minimizes the regret with respect to the
objective of SVMs. For linear SVMs, the cost function sim-
plifies to:

ct(f) = V (f,xt, yt) + γ ‖f‖22 . (8)

Similarly to Equation 2, the online SVM predictor can be
smoothed out over time as:

(ỹ1, . . . , ỹt) = arg max
k1,...,kt{

φ
t−1∑
i=1

{ki = ki+1} +

t∑
i=1

{sgn(f(xi)) = ki} |f(xi)|

}
, (9)

where {·} is an indicator and φ determines the importance
of label smoothing. In practice, the maximization (9) should
be performed over a window of most recent examples rather
than the entire history. In our experiments, we limit the win-
dow to 10 most recent examples. We observed no significant
difference in results when the size of the window varies from
5 to 20 examples.

Experiments
Our experiments are divided into 4 groups. In each of them,
we gradually relax the assumptions of Chang et al. (2009) on
learning offline and from completely labeled data. Naturally,
we progressively consider more and more practical solutions
to identity inference using TV remote controls.

All experiments are done in MATLAB. Manifold regular-
ization of SVMs is evaluated based on the implementation of
Belkin et al. (2006). Offline learning of SVMs is performed
using LIBSVM (Chang and Lin 2001). All offline learning
results are obtained by 10-fold cross-validation.
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Accuracy [%]
Dataset L Majority SVM Manifold regularization of SVMs

baseline 10−4 10−3 10−2 10−1 1 101 102 103 104

20 76.61 88.71 71.77 73.39 78.23 80.65 76.61 83.87 85.48 85.48 83.87
40 76.61 92.74 56.45 56.45 70.16 83.87 82.26 83.87 77.42 76.61 77.42

Household 2 60 76.61 93.55 41.94 41.94 37.90 84.68 82.26 74.19 66.13 70.97 68.55
80 76.61 91.13 82.26 83.06 86.29 89.52 79.84 77.42 75.00 74.19 77.42

100 76.61 92.74 66.13 67.74 75.00 91.13 83.06 76.61 69.35 33.87 40.32
20 65.56 68.89 34.44 34.44 34.44 34.44 34.44 34.44 34.44 34.44 33.33
40 65.56 68.89 34.44 34.44 34.44 34.44 34.44 34.44 34.44 34.44 34.44

Household 4 60 65.56 70.00 34.44 34.44 34.44 35.56 34.44 36.67 37.78 34.44 34.44
80 65.56 81.11 40.00 40.00 38.89 37.78 34.44 34.44 34.44 34.44 34.44

100 65.56 84.44 50.00 50.00 51.11 50.00 34.44 34.44 34.44 34.44 34.44

Table 2: Comparison of SVMs, manifold regularization of SVMs, and the majority class baseline on 2 remote control datasets.
Manifold regularization of SVMs is performed for various regularization parameters γu ∈ [10−4, 104]γ. The fraction of labeled
examples L varies from 20 to 100 percent.

Figure 2: Comparison of SVMs (black lines) and M3Ns (black lines with diamonds) on 4 remote control datasets. The methods
are compared by their accuracy, which is reported as a function of the fraction of labeled examples. We also report the accuracy
of the majority class baseline (dashed gray lines).

Complex decision boundaries
The first experiment evaluates the benefit of using non-linear
predictors in our domain. Moreover, we try to improve these
predictors by utilizing the structure of our problem. In short,
we compare 6 max-margin classifiers: SVMs (1) with linear,
cubic, and RBF kernels; and M3Ns (2), which are computed
over the same set of kernels.

Our results are shown in Figure 1. Based on these results,
we conclude that the simplest decision boundaries yield the
highest accuracy on all datasets. Therefore, learning of non-
linear decision boundaries is not beneficial at all. A possible
cause for this result is that the dimensionality of our datasets
is too high in comparison to the number of training examples
(Table 1). In turn, linear decision boundaries yield close-to-
optimal results. As a result, the rest of our experiments focus
on linear models only.

In addition, note that M3Ns yield better results than SVMs

for almost all households. The benefit of using the temporal
structure is lower than reported by Chang et al. (2009) since
we use a simpler model.

Partially labeled data
The second experiment is focused on learning from partially
labeled data. Our main objective is to evaluate the feasibility
of learning in this setting, and explore the utility of unlabeled
data.

As a representative method for semi-supervised learning,
we select manifold regularization of SVMs (3). The method
is evaluated on 2 of our datasets and our results are reported
in Table 2.1 Based on these results, we conclude that semi-
supervised learning is not suitable for our domain. Manifold

1Manifold regularization of SVMs cannot be straightforwardly
generalized to multi-class problems. Therefore, the method is eval-
uated only on households of 2 people.

1830



Figure 3: Comparison of online-learned SVMs (black lines) and M3Ns (black lines with diamonds) on 4 remote control datasets.
The methods are compared by their cumulative accuracy up to each time step. We also report the accuracy of online and offline
majority class baselines (solid and dashed gray lines), and offline-learned SVMs (dashed black lines).

regularization of SVMs is often worse than supervised learn-
ing of SVMs, and in many cases, it does not even outperform
the majority class baseline. This trend is likely caused by the
lack of a manifold in our data.

Since the unlabeled data does not seem very valuable, we
disregard the data in the rest of our experiments and focus on
supervised learning. Figure 2 shows that supervised learning
with linear SVMs yields extremely good results. Even when
a small portion of data is labeled, such as 20 percent, SVMs
beat the majority class baseline. Smoothing of the results by
M3Ns yields an additional improvement in accuracy.

Online learning
Up to this point, we studied a version of our problem, where
data are collected in advance. However, in practice, the data
are generated on-the-fly whenever someone uses the remote
control. A practical solution to our problem should take this
property into account. It should also improve over time and
adapt when the patterns of users change. One way of obtain-
ing this solution is by formulating our problem as an online
learning problem (Cesa-Bianchi and Lugosi 2006).

In this work, our online learning algorithm iteratively de-
scends the gradient (Equation 6) of the cost function (Equa-
tion 8), and minimizes the regret with respect to the optimal
solution to linear SVMs. To evaluate our algorithm, we emu-
late the environment where training examples are introduced
over time. All examples are labeled and shown one at a time.
Our learner is compared to offline-learned SVMs, the major-
ity class baseline, and an online majority class baseline. The

online baseline votes for the most frequent label in retrospect
(Blum 1996).

Our results are shown in Figure 3. Based on these results,
we conclude that online learning of linear SVMs is a viable
solution to our problem. The algorithm quickly outperforms
the majority class baseline and once learning is completed, it
performs as well as offline-learned SVMs in 3 out of 4 cases.
Moreover, our solution also outperforms the online majority
class baseline. Thus, we may conclude that the combined set
of button-press and accelerometer features provides as good
or better classifier than the majority vote in retrospect. As in
our previous experiments, smoothing through M3Ns usually
improves the SVM results.

Online learning with partially labeled data
The last experiment essentially combines the ideas of online
learning with learning from partially labeled data. This setup
is relevant in our problem because remote control users only
rarely provide feedback about their identity, such as logging
into their profile on a TV or a home entertainment system.

In this experiment, we assume that only a fraction of data
is labeled. Otherwise, our experimental setup is identical to
the last experiment. The fraction of labeled data varies from
10 to 100 percent in 10 percent increments, and the data are
chosen uniformly from the entire dataset.

Our results are shown in Figure 4. Based on these results,
we conclude that online learning of linear SVMs is a viable
solution to predicting the identity of remote control users. In
particular, even when a small portion of data is labeled, such
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Figure 4: Comparison of online-learned SVMs (black lines) and M3Ns (black lines with diamonds) on 4 remote control datasets.
The methods are compared by their accuracy, which is reported as a function of the fraction of labeled examples. We also report
the accuracy of online and offline majority class baselines (solid and dashed gray lines), and offline-learned SVMs (dashed black
lines). The offline-learned SVMs are trained on completely labeled data.

as 20 percent, online-learned SVMs outperform both offline
and online majority class baselines in 3 out of 4 cases. As in
our previous experiments, smoothing through M3Ns usually
improves the SVM results. Finally, note that online-learned
M3Ns sometimes perform better than offline-learned SVMs.

Conclusions
Non-invasive identity inference in the home environment is
a challenging problem. In our paper, we build on the work of
Chang et al. (2009) and show how to make it more practical.
In particular, we propose an online algorithm that learns the
identity of remote control users over time and from partially
labeled data. The algorithm runs in real time, performs well
in practice, and comes with theoretical guarantees on its per-
formance.

The accuracy of our predictor is nowhere near to 100 per-
cent. This is not surprising due to the non-invasive character
of our sensor. On the other hand, this precludes our approach
from being applied in domains, where users have to be iden-
tified with a high precision or they are immediately annoyed.
One of the suitable domains for our approach is targeted TV
advertising. In this context, ads are already present, and their
personalization would likely only improve the quality of the
ads.

Our approach relies on partially labeled data, which is one
of its shortcomings. This issue is less significant than it may
seem due to recent changes in the consumer electronics busi-
ness. In particular, many new TVs can be used to access the
Internet. To gain the access, consumers are often required to
create their profiles. The profiles can be viewed as a labeling
mechanism, which labels our data whenever a user logs into
the profile.

In our future work, we plan to use non-remote control pat-

terns, like surfing and viewing habits, to improve our predic-
tor. Also, we would like to take in account semantically rele-
vant time periods, such as weekends, holidays, and seasonal
changes in programming. Finally, we plan to collect a larger
dataset and investigate the value of semi-supervised learning
in this dataset.
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