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Abstract  
Human vision is often guided by instinctual commonsense 
such as proportions and contours. In this paper, we explore 
how to use the proportion as the key knowledge for design-
ing a privacy algorithm that detects human private parts in a 
3D scan dataset. The Analogia Graph is introduced to study 
the proportion of structures. It is a graph-based representa-
tion of the proportion knowledge. The intrinsic human pro-
portions are applied to reduce the search space by an order 
of magnitude. A feature shape template is constructed to 
match the model data points using Radial Basis Functions in 
a non-linear regression and the relative measurements of the 
height and area factors. The method is tested on 100 datasets 
from CAESAR database. Two surface rendering methods 
are studied for data privacy: blurring and transparency. It is 
found that test subjects normally prefer to have the most 
possible privacy in both rendering methods. However, the 
subjects adjusted their privacy measurement to a certain de-
gree as they were informed the context of security. 

1. Introduction 

The rapidly growing market of three-dimensional holo-
graphic imaging systems has created significant interest in 
possible security applications. Current devices operate us-
ing a millimeter wave transceiver to reflect the signal off 
the human body and any objects carried on it. The device 
penetrates less dense items, like clothing and hair. Unlike 
current metal detectors, the system can also detect non-
metal threats or contraband, including plastics, liquids, 
drugs and ceramic weapons hidden under clothing as seen 
in Figure 1.   
 The technology has also been used to create body meas-
urements for custom-fit clothing. The holographic imager 
creates a high-resolution 3-D body-scan, allowing shops to 
provide tailored measurements to designers or provide rec-
ommendations on best-fit clothing. These high resolution 
scanned images reveal human body details and have raised 
privacy concerns. Airport and transport officials in several 
countries are refusing to run a test trial with the scanners 
until a more suitable way to conceal certain parts of the 
human body is found.  
 The scanner creates a three-dimensional point cloud 
around the human body. Since the millimeter wave signal 
cannot penetrate the skin, a three-dimensional human sur-
face can be found. Furthermore, since the typical pose of a 

subject is standing, with arms to the side, we can segment 
the 3-D dataset into 2-D contours, which significantly re-
duces the amount of data processing. The goal of this study 
is to develop a method that can efficiently find and conceal 
the private parts of a human. 
 

 
 
Figure 1. The 3D holographic imaging systems can detect con-
traband beneath clothing, yet they raise privacy concerns due 
to the detailed human figure that is revealed. 

2. Related Work 

From a computer vision point of view, detecting features 
from 3D body scan data is nontrivial because human bodies 
are flexible and diversified. Function fitting has been used 
for extracting special landmarks, such as ankle joints, from 
3D body scan data [26, 27], similar to the method for ex-
tracting special points on terrain [14]. Curvature calculation 
is also introduced from other fields such as the sequence 
dependent DNA curvature [9]. These curvature calculations 
use methods such as chain code [21], circle fit, ratio of end 
to end distance to contour length, ratio of moments of iner-
tia, and cumulative and successive bending angles. Curva-
ture values are calculated from the data by fitting a quad-
ratic surface over a square window and calculating direc-
tional derivatives of this surface. Sensitivity to the data 
noise is a major problem in both function fitting and curva-
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ture calculation methods because typical 3D scan data con-
tains loud noises. Template matching appears to be a prom-
ising method because it is invariant to the coordinate sys-
tem [26, 27]. However, how to define a template and where 
to match the template is challenging and unique to each 
particular feature.  
 In summary, there are two major obstacles in this study: 
robustness and speed. Many machine learning algorithms 
are coordinate-dependent and limited by the training data 
space. Some algorithms only work within small bounding 
boxes that do not warrant an acceptable performance since 
the boxes need to be detected prior to the execution of the 
algorithm and are, often, not amenable to noise. For exam-
ple, if a feature detection algorithm takes one hour to proc-
ess, then it is not useful for a security screening system. In 
this paper, we present a fast and robust algorithm for pri-
vacy protection. 

3. Analogia Graph 

Analogia (Greek: , analogia “proportion”) Graph 
is an abstraction of a proportion-preserving mapping of a 
shape. Assume a connected non-rigid graph G, there is an 
edge with a length u. The rest of edges in G can be normal-
ized as pi = vi / u. Let X and Y be metric spaces dX and dY. A 
map f: X Y is called Analogia Graph if for any x,y X 
one has dY(f(x),f(y))/u = dX(x,y)/u.  
 Analogia Graph is common in arts. The Russian Realism 
painter Ropin said that the secret of painting is “compari-
son, comparison and comparison.” To represent objects in a 
picture realistically, a painter has to constantly measure and 
adjust the relationship among objects. “You should use the 
compass in your eyes, but in your hands,” Ropin said. In-
stead of using absolute measurement of the distances and 
sizes, artists often use intrinsic landmarks inside the scene 
to estimate the relationships. For example, using number of 
heads to estimate the height of a person and using number 
of eyes to measure the length of a nose, and so on. Figure 2 
is an Analogia Graph of a human body. 
 

 
Figure 2. Analogia Graph of a human figure. 

 
 Why Analogia Graph is important to our visual experi-
ence? Most of us are not aware that our eyes make rapid 
movements, so called saccades, at four times per second, 

which help to cover the full visual field. When people are 
looking at an object, the saccades follow the shape of the 
object similar to the way as blind people obverse an object 
by touching it. The trajectory of those saccadic movements 
forms a graph. According to the philosopher George Ber-
keley, seeing is like touching at a distance. This idea was 
resurrected by neural scientist Rodney Cotterill [28]. 
Driven by our instinct, vision enables us to react quickly 
from dangerous situations at a distance. Analogia graph is 
one of the visual reasoning routines based on instinctual 
knowledge and heuristics about objects such as human fig-
ures. 

4. Proportions as Commonsense 

We often take everyday commonsense for granted. Our 
knowledge about proportions is an excellent example. In-
trinsic proportion measurements have also been used in 
architecture and art for thousands of years. Roman architect 
Vitruvius said that the proportions of a building should 
correspond to those of a person, and laid down what he 
considered to be the relative measurements of an ideal hu-
man. Similarly in art, the proportions of the human body in 
a statue or painting have a direct effect on the creation of 
the human figure. Artists use analogous measurements that 
are invariant to coordinate systems. For example, using the 
head to measure the height and width of a human body, and 
using an eye to measure the height and width of a face.  

Height of an adult human body: 6–8 heads 

Width of an adult human body: 2-3 heads 

Location of chest area:  2-3 heads 

Length of an arm:  4 heads 

Using this artistic approach, we can create a graph where 
nodes represent regions and are connected to each other by 
edges, where the weight is defined as the distance between 
the nodes in proportion to the height of the head. Initially, 
we stretch the graph such that it overlays the entire body. 
We then create a link between each node and its respective 
counterpart. We link the head, shoulders, arms, elbows, 
hands, neck, breasts, waist, legs, knees, and feet to their 
respective regions. There is some tweaking required to as-
sure that the waist region does indeed cover that area. Here 
we run a quick top-down search through the plane slices 
until there is at least two disjoint areas, which we consider 
to be the middle of the waist. This change also makes 
modifications to where the knees and breasts are, and how 
large their regions are. 
 Figure 3 shows a sample of the vertical proportion in a 
typical art book and the actual distribution of head to body 
proportions calculated from our CAESAR data set [1]. The 
results show that on average a human is six to eight heads 
tall. Based on our observations from one hundred 3D scan 
data sets of adults from sixteen to sixty-five years old, in-
cluding subjects from North America, Europe and Asia, we 
found that the length of one and a half head units from the 
bottom of the head is enough to cover the chest area. In 
addition, the chest width is about three heads wide. Figure 
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4 shows an output from the intrinsic proportion calculation 
based on the sample from CAESAR database.  
 We take into account that not every subject has all four 
limbs. Our algorithm still accepts the scan if such items are 
missing, such as half an arm or half a leg. It is also amena-
ble to a complete loss of an arm or leg by looking at the 
expected ratio versus the real ratios when determining the 
length of each particular region. 
 

 
 

Figure 3. Body height measured by head example (left), nor-
mal distribution of heads per body (right). 

 

 
 

Figure 4. Detected waist region in white. 
 
However convenient to find such broad range of regions, it 
is not possible to expand this algorithm to find more details 
like specific fingers, toes, ankle joints, or the nose. These 
searches are more complicated and require additional tem-
plate fitting per feature and would significantly reduce the 
algorithm’s run time. We found that the intrinsic proportion 
method can reduce the search space by an order of magni-
tude. For example, our algorithm is 60 times faster than the 
record in the study [27]. In addition, it reduces the risk of 
finding the local optima while searching the whole body. 

5. Template Matching 

Our objective is to reduce the search space of the 3D body 
scans with Analogia Graph. In this study, we assume that 
the body is standing with the arms hanging to the sides in a 
non-concealing way. If the arms are too close to the body, 

then the holograph imager cannot produce an accurate rep-
resentation of the body and items on the side of the body 
could be completely missed because the area between the 
arm and the body would not be clearly defined. We start by 
dividing the 3D data points into 2D slices. The points are 
‘snapped’ to the nearest planes enabling us to convert a 3D 
problem to a 2D one. Examining each slice from top to 
bottom is rather an expensive process. Here we present a 
novel approach to reduce the search space by making use of 
intrinsic proportions. It is a relative measurement that uses 
an object in the scene to measure other objects [22]. 
 Template matching is image registration that matches a 
surface, of which all relevant information is known, to a 
template of another surface. The matching of the two sur-
faces is driven by a similarity function. We need to solve 
two problems before applying template matching on the 
regions of interest. First, a suitable template has to be cre-
ated. Second, a similarity function has to be selected so that 
a minimization algorithm can align the template onto the 
region of interest. For each plane of the scan data, the back 
of the body contour can be removed. By assigning the X-
axis between the two points with the greatest distance, we 
can obtain the front part of the body contour. This aligns 
the subject to our template such that the matching is never 
attempted on a twisted or backward body. We then use 
three Radial Basis Functions (RBF) to configure the tem-
plate for a female breast pattern.  

     (1) 

where, a = a1 = a2, b = a3, s = s1 = s2, and s3 = 0. We use 
non-linear regression on the variables a, b, u and s to match 
the template with the scan data. Figure 5 shows the match-
ing results for the female and male samples.  

 
Figure 5. Variable definitions for the breast template (up), 
matching results for the female sample (bottom left) and male 
sample (bottom right). The solid black curves are the template 
contours. The red points are the 3D scan data.  
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 Most shape descriptions depend on particular coordinate 
systems and particular viewpoints, meaning that the algo-
rithm can only work within the same ‘space’ as the training 
data. Our shape invariant measurements are aimed to com-
pute the shape properties from the ratio, rather than abso-
lute values. This reduces this dependency onto a particular 
pose that is easily controlled, as opposed to creating an 
algorithm for each available holograph imager. 
 Template matching not only filters out noises, but also 
describes the characteristics of a shape. We define the fol-
lowing invariant similarity functions to the coordinate sys-
tem: height ratio and area ratio. The height ratio is defined 
as:  

      (2) 
 
The area ratio is defined as the ratio of the area of curvature 
feature (A1) to the total area (A2) of the model by the fol-
lowing formula:  

      (3) 

where,  

     (4)  
  

     (5) 

We use the Taylor series to find an appropriate approxima-
tion of the areas, for example: 

    (6) 

 
It is necessary to attempt to match the template to each 
slice within the detected area, where only the greatest ratio 
of curvature is kept and used as the final result. 
 Here we use the parameterized template to model the 
human body curvatures. The following is the heuristic tem-
plate match process: 

 Calculate the length of the head; 
 Locate the chest area by moving down  head;  
 For slice = 1 to k; 
  Snap the points to the nearest slice grid;  
  Find the slice at the center of the chest; 
  Terminate the iteration; 
 End slice;  
 Minimize the Euclidean Distance between the 
  template and the data points at the slice; 
 Calculate the ratios Hr and Ar ; 
 Determine the gender based on threshold; 

6. Results

We tested our algorithm with a subset of the CAESAR da-

tabase, which contains 50 males and 50 females ages 16-
65, where 50 of them are North American, 24 are Asian, 
and 26 are from the European survey of Italy and the Neth-
erlands. We tested our algorithm to find the breast features 
from known female and male scan data samples. Figure 6 
shows these test results. From the plot, we can see that 
there are two distinguishable groups, which happen to co-
incide with the particular gender of each subject. The male 
subjects tend to have no curvature features and lie in the 
lower left range of the graph, whereas female subjects do 
demonstrate these curvature features and lie in the upper 
right range of the graph. There is a ‘dilemma’ zone where 
some over-weight males do have the curvature features. 
However, the over-lapped zone is small, less than eight 
percent of the total one hundred samples.  

 
Figure 6. Classification test results from CAESAR samples.  
 
After the area and height factors have been calculated, we 
determine the feature area. Once we find the feature area, 
we reduce the polygon resolution so that the area is blurred. 
Figure 7 shows the results of the blurring effects in wire-
frame mode. Figures 8–9 show scales of blurring and trans-
parency respectively. 
 

 
Figure 7. The blurred scale. 

 

 
Figure 8.  The blurred surface rendering. 
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Figure 9. The transparent scale. 

7. Usability Study 

Here let’s investigate the usability of the privacy-aware 
algorithm. It is common knowledge that most people dis-
agree on how much privacy can be given up for security. It 
was also another goal of ours to find out what most end-
users would give up for that security. We ran two sets of 
two tests. Both sets included Figure and Fig as scales where 
the subjects rated which they preferred given the particular 
privacy concerns discussed prior to showing them the im-
ages. Ten random males and ten random females, whose 
ages are from 19 to 53, including students, faculty members 
and residents, were interviewed in the lab. 
 In the first study, subjects were told to imagine that they 
(or their girlfriend or wife) were in an airport and had to 
walk through the three-dimensional holographic scanner, 
mentioned in the introduction, and that the resulted images 
would be displayed to the security officials on duty. They 
were asked to choose a blurred image, or a transparent im-
age. The men averaged a 4.8 on the blurred scale and a 4.2 
on the transparent scale. The women averaged a 4.0 on the 
blurred scale and a 3.8 on the transparent scale. 
 
Table 1. User preferences without security concerns. 

Gender Method Rank Ave 

Blurring 5 5 5 5 4 5 4 5 5 5 4.8 
Male 

Transparency 4 4 4 4 4 5 4 4 4 5 4.2 

Blurring 5 5 4 4 4 3 4 4 4 3 4.0 
Female 

Transparency 5 5 4 4 4 4 3 3 4 2 3.8 

 
Table 2. User preferences with security concerns 

Gender Method Rank Ave 

Blurring 4 3 3 3 5 3 2 3 3 3 3.2 
Male 

Transparency 3 3 3 3 4 3 2 3 3 2 2.9 

Blurring 2 3 3 2 2 2 2 3 3 3 2.5 
Female 

Transparency 2 2 3 2 2 2 2 3 3 2 2.3 

 
 In the second study, subjects were told to rate their pri-
vacy on a scale versus security in a context which not only 
were they being observed, but others who may or may not 
be attempting to conceal weapons were also being ob-
served. Such oddities as a pocket knife between the breasts 
would be more difficult to detect in a very blurred mesh. 
The men averaged a 3.2 on the blurred scale and a 2.9 on 
the transparent scale. The women, on the other hand, aver-

aged a 2.5 on the blurred scale and a 2.3 on the transparent 
scale. 
 

The two studies display how different contexts can affect a 
subject’s response and personal choice. It is clear that in the 
first study the men were more concerned about having their 
girlfriends/wives seen than were the women concerned 
with how much they were seen. In the second study, it is 
clear that nearly every subject gave up more of their pri-
vacy for the benefits of security and the safety of their trav-
els. 

8. Conclusions 

In this paper, we explored an algorithm to recognize body 
feature areas and hide them to protect a subject’s privacy. 
The intrinsic human proportions are used to drastically re-
duce the search space and reduce the chance of local op-
tima in detection. The Radial Basis Function is used as the 
feature template whose parameters are determined by non-
linear regressions along each contour slice. Feature factors 
of the height and area are then used to classify the curva-
ture feature as being male or female. The relative meas-
urements are coordinate invariant, meaning that the algo-
rithm is robust and is capable to work with multiple data 
sets. With the non-linear regression method, the template 
matching is effective and convergent within a given error 
range. We have tested one hundred body scans from the 
CAESAR database and found that the algorithm can suc-
cessfully classify the male and female bodies based on the 
curvature features at a rate of over ninety percent.  
 Two surface rendering methods are studied for data pri-
vacy: blurring and transparency. It is found that test sub-
jects normally prefer to have the most possible privacy in 
both rendering methods. However, the subjects adjusted 
their privacy measurement to a certain degree as they were 
informed the context of security. 
 Our future work includes the development of more ro-
bust coordinate invariant methods to detect more prede-
fined body features, and to calibrate the algorithms for both 
protecting privacy and detecting concealed weapons. Ulti-
mately, we will work with the real field data to fine-tune 
the algorithms. 
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