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Abstract

When deploying a robot to a new task, one often has to train
it to detect novel objects, which is time-consuming and labor-
intensive. We present TAILOR - a method and system for ob-
ject registration with active and incremental learning. When
instructed by a human teacher to register an object, TAILOR
is able to automatically select viewpoints to capture informa-
tive images by actively exploring viewpoints, and employs
a fast incremental learning algorithm to learn new objects
without potential forgetting of previously learned objects. We
demonstrate the effectiveness of our method with a KUKA
robot to learn novel objects used in a real-world gearbox as-
sembly task through natural interactions.

Introduction
In many industrial and domestic applications, automating
object detection and recognition is an essential capabil-
ity. Fast object instance learning becomes a fundamen-
tal problem and key requirement of automated systems
and machines. Recently, deep learning-based methods have
achieved impressive detection accuracy. However, when de-
ployed for a new task, the system needs to be re-trained
on new objects, which requires costly human efforts to col-
lect and annotate a large number of images. Some works
deal with the generation of high-quality training data by (i)
simplifying the data collection and annotation process using
specific devices or user interfaces (Marion et al. 2018), or
(ii) automating the generation of data samples through aug-
mentation and synthesis (Dwibedi, Misra, and Hebert 2017).
For the former, it still involves a lengthy process of data sam-
pling and manual annotation. For the latter, the characteris-
tics of synthesized data may not match with those of actual
data from domain-specific environments, leading to unstable
and deteriorated performance.

Related work To simplify data collection and annotation,
a few works resort to interactive data collection and anno-
tation, where an agent is endowed with the ability to reg-
ister object instances with human guidance (Kasaei et al.
2015; Dehghan et al. 2019; Kasaei et al. 2018). However,
they usually require strong prior knowledge of objects (e.g.,
3D models) and are restricted by the limited functionalities

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3

3D Pose 
Augmentation

II. Incremental Learning

Raw & Augmented 
Color Images

Ground Truth 
Annotations

Depth Image Segmentation

Mask

I. Canonical View Selection

Evaluate Goodness of View

Color Image

Pre-saved 
Background 

Images

2D Variation 
Augmentation

Resnet101/ 
backbone

RPN
RCN

Faster R-CNN: Teacher

Faster R-CNN: Student

D
ist

ill
at

io
ns

 fo
r f

ea
tu

re
s, 

RP
N

 a
nd

 R
CN

Resnet101/ 
backbone

RPN

RCN

Figure 1: A system architecture of TAILOR

of the hardware (e.g., robot mobility) and software, thus only
addressing small-scale toy problems. It is paramount to fill
this gap with an effective interaction protocol for agents to
learn new objects in a similar way as a human learner does.
Rooted in object detection, object learning can be boosted by
using preferential viewpoint information (Xu et al. 2020).
For example, the speed and accuracy of object recogni-
tion are higher in canonical views relative to non-canonical
views, as shown in experiments with both computers and
humans (Ghose and Liu 2013; Poggio and Edelman 1990).
Here, canonical views refer to viewpoints that visually char-
acterize the entity of interest, which often encompass sta-
ble, salient and significant visual features (Blanz, Tar, and
Bülthoff 1999).

This paper demonstrates an interactive process facilitated
by TAILOR - a method and system that enables Teaching
with Active and Incremental Learning for Object Registra-
tion. Using TAILOR, a robot learns new object instances
while leveraging the representation bias of canonical views.
We show how a robot with an eye-in-hand camera interacts
with a human teacher to register new objects through (1) hu-
man instruction grounding, (2) active image sampling based
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Figure 2: Object registration with canonical view selection

on canonical view selection, and (3) fast training of an object
detector with incremental learning. We present the learning
outcome in a real-world use case of interactive object de-
tection. Our method can greatly shorten the cycle-time and
reduce manpower cost in new object registration, thus con-
tributing to fast and low-cost deployment of vision-based so-
lutions in real-world scenarios.

Method
The system architecture of TAILOR is shown in Figure 1.
It consists of two phases. In phase I - canonical view selec-
tion - the robot uses an eye-in-hand RealSense D435 camera
to get RGB-D images from selected viewpoints, where the
viewpoints are evaluated for their goodness of view (GOV)
in real-time. The GOV is used to determine canonical views
where the RGB images are registered as training samples.
In phase II, the selected samples are fed into the training
pipeline with a series of data augmentation mechanisms and
an incremental learning scheme.

Interaction Protocol
To register new objects, a human teacher issues speech com-
mands to activate the teaching process. For example, the
teacher puts an object on the tabletop and says “Start object
registration.” Then, the teacher points at the object and says
“This is the input shaft.”. Through keyword matching and
object segmentation, the system registers the object name
and relates it with the new incoming training samples. Fig-
ure 2(a) shows the setup of object registration. To test the
object detector, the teacher may put one or a few objects on
the table and ask “Where is the input shaft?”. The robot per-
forms detection to locate the corresponding object and dis-
plays visual answer (bounding box) or points at it with the
gripper.

Canonical View Selection
• Segmentation The RealSense D435 camera provides a

color image and point cloud of the scene. Using the point
cloud, we adopt the Point Cloud Library (PCL) to esti-
mate the dominant plane model and extract the object on
the tabletop. This results in a regional mask of the object,

which is used to extract both the color information and
depth information within the object region.

• Goodness of view The goodness of a viewpoint can be
measured by multiple metrics defined on different visual
features, such as, visible area, silhouette, depth, visual
stability, curvature entropy, mesh saliency, etc. (Polon-
sky et al. 2005; Dutagaci, Cheung, and Godil 2010). The
GOV is a function of the statistical distributions of vi-
sual features that denote its informativeness. To compute
GOV, we first perform aforementioned depth segmenta-
tion. Next, we use the resultant mask to apply on the color
and depth images to extract the regional data of the ob-
ject. Finally, we compute the GOV based on multiple vi-
sual features, including silhouette length, depth distribu-
tion, curvature entropy, and color entropy (Xu et al. 2020).
Canonical views are registered as those with higher com-
bined GOV.

• Viewpoint exploration Unlike other interactive learning
methods that rely on prior 3D information of an object,
our canonical view selection method gathers sparse view-
point information and evaluates the aggregated GOV of
the viewpoints on-the-fly. This denotes a learning expe-
rience similar to a robot exploring an unknown object or
space. The only assumption is that an RGB-D camera is
calibrated with respect to a set of candidate viewpoints
on a virtual spherical surface, where an object of interest
is located at the sphere center. Thus, the 3D coordinates
of the viewpoints are known and the robot can move the
camera to those points. The robot then follows the OnLIne
Viewpoint Exploration (OLIVE) routine proposed in (Xu
et al. 2020) to visit viewpoints. Figure 2(b) shows the view
trajectory for an industry object. The RGB-D data cap-
tured at each viewpoint is used to extract object features
and compute the GOV. Figure 2(c) shows the visual fea-
tures for GOV evaluation at a particular viewpoint. At any
viewpoint, the robot searches the local maxima of GOV,
where the GOV is computed as the weighted sum of indi-
vidual GOV metrics. Once the local maxima is found, the
next view is chosen as one with the largest geographical
distance to the current view.

In the current setup, we put a single object on the ta-
ble. However, this can be extended to multiple objects with
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two additional components: (1) multiple object segmenta-
tion, and (2) hand gesture recognition. For (1), all objects
are assumed to be placed in separation and a unique object
mask can be extracted for individual objects. With (2) we
can extract the pointing gesture so as get the object of inter-
est, i.e., the one being pointed at.

Incremental Learning
The image samples from canonical views are augmented
through 2D variation and 3D transformation to generate a
training set (Fang et al. 2019). Once the training images
of one or a few novel objects have been generated, the sys-
tem performs on-site incremental learning by calling an in-
cremental learning algorithm on a state-of-the-art generic
object detector, such as Fast R-CNN (Girshick 2015) and
Faster R-CNN (Ren et al. 2015). As examples, the incre-
mental learning algorithm by (Shmelkov, Schmid, and Ala-
hari 2017) employs biased distillation for Fast R-CNN while
the recently developed fast incremental learning algorithm
for Faster R-CNN (Faster ILOD) (Peng, Zhao, and Lovell
2020) uses knowledge distillation for object detectors based
on Region Proposal Networks (RPNs) to achieve efficient
end-to-end learning. These incremental learning algorithms
employ distillation approaches to avoid catastrophic forget-
ting. There would be small reduction in accuracy on the
newly learned object compared to normal re-training. The
incremental learning algorithm is able to avoid catastrophic
forgetting of previously learned objects when re-trained just
for new objects. The updated model is then applied to detect
new objects in new tasks, while still capable of detecting ob-
jects learned previously.

Evaluation
We implement TAILOR with a KUKA LBR iiwa 14 R820
robot of 7-degree-of-freedom (7-DoF) and a RealSense
D435 camera mounted on the end-effector. The KUKA
robot is a lightweight robot which offers high flexible mo-
tion and high-performance servo control with repeatability
of ±0.15 mm. We pre-define a set of 88 viewpoints at the
vertices of an icosahedron on a semi-sphere (radius = 350
mm). The geometric center of the object is aligned with the
viewpoint sphere center. The camera position is calibrated
with a default top view position and its pose is preset so as
to point towards the object center at any viewpoint. For a flat
object, it is flipped during the registration process so that im-
ages of the other side are captured. We perform interactive
learning on a few novel components used for the assembly
of an industrial gearbox product.

For benchmarking, we evaluate the effect of canonical
view selection on the T-LESS dataset (Hodan et al. 2017).
We compare our method against a baseline random view-
point selection method and an efficient view selection us-
ing proximity information (EVSPI) (Gao, Wang, and Han
2016). The detection performance is shown in Figure. 4. Us-
ing only a few image samples, our method is able to train
object detectors that outperform alternative methods, espe-
cially when the view budget is low. Interested readers may
refer to (Xu et al. 2020) for detailed benchmarking results.

(a) Human view (b) Robot view

Figure 3: Robot detecting object “transfer shaft”

Figure 4: Comparing viewpoint selection on T-LESS dataset

For testing, we put multiple objects (including unknown
objects) on the tabletop. The robot is able to reliably detect
learned objects and provide corresponding feedback through
speech, visual display and pointing gestures. Figure 3 is a
snapshot of the robot detecting an object “transfer shaft”.

Conclusions and Future Work

TAILOR provides an intuitive and efficient way to learn new
objects for autonomous agents. It can be used by non-expert
users to teach robots new objects without efforts of program-
ming or annotation. As such, the method provides a scal-
able solution to real-world tasks involving vision-based ob-
ject detection. To enhance scalability, we intend to simplify
the setup by (1) alleviating the need of a dominant flat sur-
face to support the object (which is required for depth-based
object segmentation), (2) adopting a mobile robot to allow
for more flexible and larger ranges of viewpoint exploration,
and (3) employing more powerful natural speech recogni-
tion and synthesis (vs. command-type keyword matching)
to enhance the human-robot interaction.
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Lourakis, M. I. A.; and Zabulis, X. 2017. T-LESS: An RGB-
D Dataset for 6D Pose Estimation of Texture-Less Objects.
2017 IEEE Winter Conference on Applications of Computer
Vision (WACV) 880–888.

Kasaei, S.; Oliveira, M.; Lim, G.; Lopes, L.; and Tomé, A.
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