
DOC2BOT: A Document Grounded Bot Framework

Kshitij Fadnis, Pankaj Dhoolia, Li Zhu, Q.Vera Liao,
Steven Ross, Nathaniel Mills, Sachindra Joshi, Luis Lastras

IBM Research
{kpfadnis, zhul, steven ross, wnm3, lastral}@us.ibm.com
vera.liao@ibm.com, {pdhoolia, jsachind}@in.ibm.com

Abstract

Conversational agents – or chatbots – are widely used to
provide customer care and other informational support. Cur-
rently, the development of chatbots using standard frame-
works requires a lot of manual crafting by subject matter ex-
perts (SMEs). On the other hand, while learning-based ap-
proaches to dialog have made significant advancements, they
require training with a large volume of dialog data, which
chatbot developers typically do not have access to. To tackle
these challenges, we introduce DOC2BOT, a system that sup-
ports the automated construction of chatbots by digesting var-
ious forms of documents such as business manuals, HowTos,
and customer support pages that organizations own. In ad-
dition to this, DOC2BOT provides a user-friendly experience
to SMEs, and minimizes the effort expended by them by sup-
porting intuitive interactions and streamlining their workflow.

1 Introduction
Automated conversational assistants – or chatbots – have
become prevalent in customer care settings for tasks such
as question answering, troubleshooting, transactional activ-
ities1. Even when information already exists on websites,
customers may still prefer chatting with a bot2 in lieu of nav-
igating the dense complexity of the website. However, devel-
oping chatbots remains a painful process, especially as bot
development frameworks move beyond simple intent and
entity matching models. For example, popular frameworks
like IBM Watson Assistant3, Google DialogFlow4, Microsoft
Bot Framework5, and Amazon Lex6 provide richer Natural
Language Processing (NLP) and dialog management capa-
bilities. However, one big challenge still remains: content
creation for chatbots still largely relies on either manual
crafting, or on the manual conversion of existing informa-
tion sources like product documents, manuals, FAQ web-
pages etc. into conversation models. This dependency leads

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.revechat.com/blog/chatbots-use-cases/
2https://www.cbinsights.com/research/report/most-successful-

chatbots/
3https://www.ibm.com/cloud/watson-assistant
4https://cloud.google.com/dialogflow
5https://dev.botframework.com
6https://aws.amazon.com/lex

to two major challenges. First, businesses need dedicated
personnel or subject matter experts (SMEs) with the right
skill-sets for such tasks; even with varying degrees of tooling
help, significant hand-holding is still required. Second, busi-
nesses also need to commit significant time and effort into
keeping the conversational models up-to-date with changing
business contexts.

To tackle these challenges, we present DOC2BOT, a novel
framework to build and update conversation assistants by
automatically processing business documents. The key ca-
pabilities of DOC2BOT are:
1. Write Once. Use Everywhere: DOC2BOT consumes
business content directly, and business content changes can
easily trickle down to conversational models in an automated
fashion.
2. Content Inspired Conversation Model: DOC2BOT uti-
lizes the inherent structure in documents to automatically
extract conversation models that support conversational ex-
periences such as guided topic exploration and walk-down
of procedures.
3. Conversation Model Enhancement and Customiza-
tion Made Easy: When automatically extracted conversa-
tion models need to be improved or customized, DOC2BOT
supports human-in-the-loop learning (details in Section 2.2).
4. Advanced Natural Language Understanding (NLU):
NLU built with USE (Cer et al. 2018) provides the ability to
detect multiple intents in a single user utterance (details in
Section 3).
5. Declarative Dialog Manager: Orchestrates multi-turn
conversations across multiple documents and supports di-
gressions, fall backs, disambiguation, and confirmations.
In the following, we present the technical details of
DOC2BOT in the phases of document ingestion, conversa-
tion model building, and deployment. An overview of the
overall workflow is provided in Figure 1.

2 Ingestion Phase
Business documents like manuals and self-help webpages
commonly have information laid out in a structured fashion
in order to help the reader consume the content better. Ex-
amples of such structure include headers, bullet-point lists,
how-to procedures, etc. Consuming such structural mark-
ers, DOC2BOT can produce a custom bot that walks a user

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

16026

Figure 1: DOC2BOT Workflow; Video: ibm.biz/doc2bot

through procedures in a step-wise fashion. We highlight two
major components of the ingestion phase.

2.1 Syntactical Conversational Model Extractor
This module extracts a hierarchical section structure from a
document; with each section being associated with a name,
content, location offsets, and possibly child sections (either
to be explored as sequential steps, or as random choices on
demand). Since our system works with HTML documents,
we use HTML’s in-built tags to identify section bound-
aries. Child sections are categorized as choice-points or
‘choices’ by default; the only exception is sections encapsu-
lated within the ordered list () tag, which are uniquely
categorized as sequential ‘steps’ rather than choices.

2.2 Human-in-the-loop Conversational Model
Extractor

The syntactic conversation model extractors outlined in Sec-
tion 2.1 may fail from time to time. In such scenarios,
DOC2BOT relies on a human-in-the-loop approach that al-
lows guidance from SMEs to customize the extraction pro-
cess to their specific domain. DOC2BOT’s human-in-the-
loop conversational model extractor starts by grouping doc-
uments that visually appear similar. While grouping docu-
ments, we ignore the content of the documents, and repre-
sent each document using a set of features extracted from its
DOM tree structure7. We then use an agglomerative clus-
tering implementation from scikit-learn (Pedregosa
et al. 2011) to cluster the documents. Documents in the same
cluster represent a unique set of section structures, which in
turn maps to a unique set of conversation templates/patterns
applicable to those documents. At this point, SMEs can work
with an exemplary document from each cluster, and provide
guidance to extract additional section structures via simple

7https://dom.spec.whatwg.org/

drag & select interactions if necessary. DOC2BOT learns
from these interactions and, with the SME’s confirmation,
generalizes and applies enhanced extraction logic to other
documents in the cluster. This module thus allows SMEs to
identify and fill gaps in the conversation model at a rapid
pace by working with a small number of exemplary docu-
ments.

3 Build Phase
Once a conversation model is acquired, DOC2BOT’s run-
time retains this structure, where a section unit extracted
from a document is referred to as an ‘action’, and a pre-
condition for each action is indicated as a ‘trigger’. Along
with actions and triggers, DOC2BOT’s runtime has built-in
template-based conversational patterns such as disambigua-
tion or confirmation.

Natural Language Understanding (NLU) In conversa-
tional systems, the natural language understanding (NLU)
unit is used to decode user utterances in terms of intents
and entities. State-of-the-art NLU approaches focus on as-
sociating a single intent to an entire user utterance. How-
ever, it is known that users often express multiple intents
in a single conversation turn. DOC2BOT adopts a variable
size (word lengths) sliding window approach over the user
utterance; classifies each of those windows; and filters out
candidate classes with scores below a configured threshold.
It then computes a window-length weighted sum score for
non-overlapping candidates and return those with the top-n
weighted sum scores as multi-intent classification results.

Declarative Dialog Manager A basic conversation plan
is built by evaluating the preconditions of an action, and re-
sponding with the action’s content if that preconditions are
triggered. If there are child actions, the first action is trig-
gered (if the child-policy consists of steps); or alternately,
the user is prompted to pick a choice from the children (if the

16027

child-policy consists of choices). We refer to top level sec-
tions as ‘goals’. At the beginning of a conversation, the user
is expected to say something that matches the precondition
of a goal. Similarly, when the conversation has proceeded
to an action with a choice of child actions, the user utter-
ance is matched with the precondition of one of the children.
When the conversation is at an action that is a step, the user
will have to say something to indicate the completion of that
step, or the intention to go to the next step. If the user’s utter-
ance triggers multiple actions, the runtime presents choices
to disambiguate.

Oftentimes, knowledge from multiple documents is
needed to hold a conversation with a user: a user may initiate
a conversation related to a process goal; or, in the context of
a specific step, a user may ask something that is detailed in
another document and hence is a part of another goal. A key
feature of our runtime is that it evaluates every user utter-
ance for preconditions associated with all the goals to check
if there is a goal-switch intended. Our runtime maintains the
context of the conversation up to the current turn in the form
of a goal-stack, allowing it to not only stitch conversations
across goals dynamically but also to return to the appropri-
ate point in the previous or main goal once the current goal
on stack has completed.

4 Conclusion
We demonstrated DOC2BOT, a system that enables busi-
nesses to rapidly build and deploy bots built on their content
with minimal human effort. In the future, we plan to incor-
porate linguistic clues along with structural clues to improve
conversation model extraction.

References
Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.; John,
R. S.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar,
C.; et al. 2018. Universal sentence encoder. arXiv preprint
arXiv:1803.11175 .
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research 12: 2825–2830.

16028

