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Abstract

Reactions such as gestures, facial expressions, and vocaliza-
tions are an abundant, naturally occurring channel of infor-
mation that humans provide during interactions. An agent
could leverage an understanding of such implicit human feed-
back to improve its task performance at no cost to the human.
This approach contrasts with common agent teaching meth-
ods based on demonstrations, critiques, or other guidance that
need to be attentively and intentionally provided. In this work,
we demonstrate a novel data-driven framework for learning
from implicit human feedback, EMPATHIC. This two-stage
method consists of (1) mapping implicit human feedback to
relevant task statistics such as rewards, optimality, and advan-
tage; and (2) using such a mapping to learn a task. We instan-
tiate the first stage and three second-stage evaluations of the
learned mapping. To do so, we collect a dataset of human fa-
cial reactions while participants observe an agent execute a
sub-optimal policy for a prescribed training task. We train a
deep neural network on this data and demonstrate its ability
to (1) infer relative reward ranking of events in the training
task from prerecorded human facial reactions; (2) improve
the policy of an agent in the training task using live human
facial reactions; and (3) transfer to a novel domain in which
it evaluates robot manipulation trajectories. In the video, we
focus on demonstrating the online learning capability of our
instantiation of EMPATHIC.

Introduction
People often react when observing an agent—whether hu-
man or artificial—if they are interested in the outcome of the
agent’s behavior. We have scowled at robot vacuums, raised
eyebrows at cruise control, and rebuked automatic doors.
Such reactions are often not intended to communicate to the
agent and yet nonetheless contain information about the per-
ceived quality of the agent’s performance. A robot or other
software agent that can sense and correctly interpret these re-
actions could use the information they contain to improve its
learning of the task. Importantly, learning from such implicit
human feedback does not burden the human, who naturally
provides such reactions even when learning does not occur.
We view learning from implicit human feedback (LIHF) as
complementary to learning from explicit human teaching,
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Figure 1: Illustrative overview of the proposed method.

which might take the form of demonstrations (Argall et al.
2009), evaluative feedback (Knox and Stone 2009; Knox,
Stone, and Breazeal 2013), or other communicative modal-
ities (Chernova and Thomaz 2014; Sadigh et al. 2017; Ad-
moni and Scassellati 2017). The problem of Learning from
Implicit Human Feedback (LIHF) asks how an agent can
learn a task with information derived from human reactions
to its behavior. We approach LIHF with data-driven model-
ing that creates a general reaction mapping from implicit
human feedback to task statistics. A simplified overview of
our proposed method is shown in Fig. 1.

The EMPATHIC Framework
We propose a data-driven solution to the LIHF problem that
infers relevant task statistics from human reactions. The
EMPATHIC framework has two stages: (1) learning a map-
ping from implicit human feedback to relevant task statistics
and (2) using such a mapping to learn a task. In the first
stage, human observers are incentivized to want an agent to
succeed—to align the person’s RH with a known task re-
ward function R—and they are then recorded while observ-
ing the agent. Task statistics are computed from R for every
timestep to serve as supervisory labels, which train a map-
ping from synchronized recordings of the human observers
to these statistics. Task state and action are not inputs to the
reaction mapping, allowing it to be deployed to other tasks.
In the second stage, a human observes an agent attempt a
task with sparse or no environmental reward, and the human
observer’s reaction to its behavior is mapped to otherwise
unknown task statistics to improve the agent’s policy, either
directly or through other usage of the task statistics, such as
guiding exploration or inferring the reward functionRH that
describes the human’s utility. This demonstration presents
one instantiation of EMPATHIC, using facial reactions as the
modality for implicit human feedback.
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We designed two task domains, one is a simulated driv-
ing domain named Robotaxi and the other is a robotic sort-
ing task. Participants were recruited to observe agents per-
forming tasks in both domains. To minimize explicit feed-
back (i.e., intended to influence the agent), participants were
told that their “reactions are being recorded for research pur-
poses”, and nothing more was said regarding our intended
usage of their reactions. This experimental setup contrasts
with prior related work (Li et al. 2020; Veeriah, Pilarski, and
Sutton 2016; Arakawa et al. 2018), in which human partici-
pants were explicitly asked to teach with their facial expres-
sions, and aligns with a key motivation for the LIHF prob-
lem, which is to leverage data that is already being generated
in existing human-agent interactions. We use data collected
in the Robotaxi domain to instantiate the first stage of EM-
PATHIC and demonstrate its effectiveness in three different
instantiations of the stage 2 task including: 1) offline learn-
ing in Robotaxi, 2) online learning in Robotaxi and 3) offline
evaluation of trajectories in the robotic sorting task.

Reaction Mapping Design
A reaction mapping takes a temporal series of extracted fea-
tures as input and outputs a probability distribution over re-
ward classes. We use a pre-trained model to extract facial
features from video data and train a deep neural network
on predicting rewards with the extracted features in a su-
pervised way. An open-source toolkit, OpenFace 2.0 (Bal-
trusaitis et al. 2018; Zadeh et al. 2017; Baltrušaitis, Mah-
moud, and Robinson 2015), is used to extract features from
raw videos of human reactions. For each image frame in the
video, OpenFace extracts head pose and activation of facial
action units (FAUs). For detecting head nods and shakes, we
explicitly model the head-pose changes by keeping a run-
ning average of extracted head-pose features and subtract it
from each incoming feature vector. Frequencies of changes
in head-pose are then computed through fast Fourier trans-
form, and the coefficients of frequencies are used as head-
motion features. To allow the series of input features to cover
a large enough temporal window of reactions, feature vec-
tors of consecutive image frames are combined through max
pooling of each dimension, resulting in temporally aggre-
gated feature vectors of the same size. We include an op-
tional auxiliary task of predicting the corresponding annota-
tions as a single flattened vector, in which each binary ele-
ment indicates whether a reaction gesture is occurring. This
auxiliary task is intended to speed representation learning
and act as a regularizer. We also use a binary classification
loss that combines the two negative reward classes as one,
which reintroduces the ordinality of the reward classes by
additionally penalizing predictions with the wrong sign.

Evaluation Results
To validate that our instantiation of stage 1 effectively
enables task learning in stage 2, we evaluated mappings
learned in stage 1 on three different tasks. In what follows,
we refer to observers from stage 1 who have created data in
the training set as “known subjects”.

Firstly, the learned reaction mappings are evaluated on

a reward-ranking task in the Robotaxi domain. The maxi-
mum a posteriori reward ranking is chosen as the learned
mapping’s single estimation after incorporating mappings
from all human reaction data in an episode. Using Wilcoxon
Signed-Rank test, the mapping’s performance on the holdout
set is significantly better than uniformly random guessing
(τ = 0), supporting the hypothesis that our learned reaction
mappings outperform uniformly random reward ranking us-
ing reaction data from known subjects watching the Robo-
taxi task; p = 0.0024 with the annotation-reliant auxiliary
task and p = 0.0207 without it.

Secondly, the learned reaction mapping can be leveraged
to interactively improve an agent’s policy.1 Specifically, the
agent updates its belief over all possible reward rankings us-
ing human reactions to its recent behaviors and then follows
a policy that is approximately optimal with respect to the
most likely reward function. To test such online policy learn-
ing, all data collected in stage 1 trains a single reaction map-
ping, and this reaction mapping is used for single-episode
sessions with human observers, none of whom created data
within the stage-1 training set. 9 of the 10 participants’ in-
teractions achieved a better return than that of a random pol-
icy, and 7 of the 10 participants’ interactions ended with the
probability of reward mappings that lead to optimal behav-
iors being the highest, moderately supporting the hypothesis
that the learned reaction mappings will improve the online
policy of a Robotaxi agent via updates to its belief over re-
ward functions, based on online data from novel human ob-
servers.

Lastly, we evaluate the reaction mappings on the robotic
sorting task. We leverage a binary classification loss and
interpret the output as a “positivity score”. Human partici-
pants observed 8 total distinct trajectories. For each trajec-
tory, we compute an overall (cross-subject) positivity score
as the mean of the trajectory’s per-subject positivity scores.
After ranking the 8 trajectories by these scores, Kendall’s
τ independence test yields τ = 0.70 (p = 0.034). This re-
sult shows that the learned reaction mappings can be adapted
to evaluate robotic-sorting-task trajectories and outperform
uniformly random guessing on return-based rankings of
these trajectories, using reaction data from known subjects.

Conclusion
In this paper we introduce the LIHF problem and the EM-
PATHIC framework for LIHF. We instantiate the EMPATHIC
framework with two different domains and demonstrate that
our instantiation is able to interpret human facial reactions in
both the training task and the deployment task. Our instanti-
ation of EMPATHIC in this work is limited to a single training
task and similar testing tasks. An important future extension
is to generalize this method to tasks with varying temporal
characteristics and reward structures. This work maps from
facial reactions (to rewards). In future work, other forms of
human implicit feedback, such as gaze, vocalizations, and
gestures, could be included to get a more accurate mapping
to different task statistics and better performance in a variety
of real-world tasks.

1This online learning setting is demonstrated in the video.
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