
AutoText: An End-to-End AutoAI Framework for Text

Arunima Chaudhary, Alayt Issak∗, Kiran Kate, Yannis Katsis, Abel Valente, Dakuo Wang,
Alexandre Evfimievski, Sairam Gurajada, Ban Kawas, Cristiano Malossi, Lucian Popa,

Tejaswini Pedapati, Horst Samulowitz, Martin Wistuba, Yunyao Li
IBM Research AI

{arunima.chaudhary, yannis.katsis, dakuo.wang, sairam.gurajada, martin.wistuba}@ibm.com, aissak21@wooster.edu,
valente@ar.ibm.com, acm@zurich.ibm.com, {kakate, evfimi, bkawas, lpopa, tejaswinip, samulowitz, yunyaoli}@us.ibm.com

Abstract

Building models for natural language processing (NLP) tasks
remains a daunting task for many, requiring significant tech-
nical expertise, efforts, and resources. In this demonstration,
we present AutoText, an end-to-end AutoAI framework for
text, to lower the barrier of entry in building NLP models. Au-
toText combines state-of-the-art AutoAI optimization tech-
niques and learning algorithms for NLP tasks into a single
extensible framework. Through its simple, yet powerful UI,
non-AI experts (e.g., domain experts) can quickly generate
performant NLP models with support to both control (e.g.,
via specifying constraints) and understand learned models.

Introduction
Recent AI advances led to rising desire of businesses and
organizations to apply AI to solve their problems (Mao
et al. 2019). However, developing performant AI models re-
mains a tedious iterative process that includes data prepara-
tion, feature engineering, algorithm/model architecture se-
lection, hyperparameter tuning, training, model evaluation,
and comparison to other models. To lower the barrier of en-
try in AI, the research community has looked into automat-
ing this process with AutoML (Hutter, Kotthoff, and Van-
schoren 2019) or AutoAI (Wang et al. 2019, 2020).

We present AutoText, an extensible end-to-end AutoAI
framework, to democratize the development of Natural Lan-
guage Processing (NLP) models. Its design considerations
include: (a) Usability: Non-experts can create NLP models
(referred to as pipelines) through a GUI, while expert users
can fully control the process via a Notebook UI1. (b) Exten-
sibility: AutoText employs an extensible architecture, where
both the components of the pipelines and the pipeline dis-
covery (known as optimization) algorithms are modeled as
exchangeable modules. (c) Comprehensiveness: AutoText
offers a comprehensive approach, combining various learn-
ing algorithms (incl. classical machine learning and deep
learning approaches) and optimization approaches (incl. al-
gorithm selection, hyperparameter tuning, and neural archi-
tecture search) into a single framework. (d) High Perfor-

∗Work done at IBM Research; now at the College of Wooster.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This demo focuses on AutoText’s GUI-based interaction.

IBM Confidential 14

Architecture

BackendFrontend

Initiate 
Experiment

Inspect 
Pipelines

Labeled
Text Data

High-quality 
Models

Transformers/
Estimators

Operators

Pipeline Selection & Model Tuning

Declarative
Pipeline

Composition

Search 
Specification

Neural
Architecture

Search

Data
Preprocessors

Featurizers

Optimizers

Figure 1: AutoText Architecture

mance: AutoText is able to learn performant models that,
in many cases, are comparable or outperform state-of-the-
art models for the corresponding tasks/datasets. A video
demonstration of AutoText can be found online2.
Related Work. Despite increasing popularity of AutoAI
systems, we are not aware of any with the comprehensive
support for text offered by AutoText. Google AutoML Nat-
ural Language3 does not allow users to select model types, or
give insights into the model produced nor into its tuning and
hyper-parameter optimization (Weidele et al. 2020). Ama-
zon SageMaker Autopilot4 offers AutoML capabilities that
can be applied on text, but does not provide intuitive visu-
alizations of pipelines and their performance; it also lacks
more advanced capabilities for neural architecture search
(NAS). Other systems, such as Microsoft AzureML-BERT5,
focus on high-performance model building with BERT pre-
training and fine-tuning, but do not offer simpler but faster
models. H206 is perhaps the closest AutoML framework to
ours; however, it supports a limited range of learning al-

2https://youtu.be/tujB0BrYlBw
3https://cloud.google.com/natural-language/automl
4https://aws.amazon.com/sagemaker/autopilot/
5https://azure.microsoft.com/en-us/services/machine-learning
6https://www.h2o.ai/products/h2o-automl

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

16001



gorithms (e.g., RF, GBM, GLM for classical ML and only
MLP for deep learning), a small pipeline search space (only
ensembles), and limited features for NLP (Word2Vec). Fi-
nally, while NAS is becoming an essential part of Au-
toML (He, Zhao, and Chu 2019), few systems focus on NLP;
moreover, none combine NAS with exploration of alterna-
tive pipelines that may include classical ML algorithms.

The AutoText Framework
AutoText comprises a frontend for easy interaction and a
backend for automated model building. We now describe
each of them in detail.

Frontend
End users can initiate the building of NLP models by up-
loading a labeled textual dataset and selecting the target col-
umn. AutoText’s backend handles the rest of the process,
including identifying the task type7 and suitable evaluation
metric, splitting the dataset into train/test, and discovering
pipelines. The best performing pipelines are then shown to
the user to inspect. This includes both a graphical represen-
tation of each pipeline illustrating its components and a tab-
ular leaderboard of pipelines sorted by performance.
Customizations. AutoText allows users to customize
through its UI many aspects of the framework, including
the types of learning algorithms explored, the number of
pipelines returned, as well as constraints, such as a time bud-
get for pipeline discovery. More advanced users can also use
its Notebook interface to impose additional controls (e.g.,
override the default search space for individual operators).

Backend
The backend of AutoText includes: (1) Operator library: a
set of operators that form basic components of typical NLP
pipelines, (2) Search specification, defining the pipeline
search space, (3) Optimizers: a set of methods to perform
joint algorithm search and hyperparameter optimization in
the defined search space, and (4) Pipeline selection and
model tuning: the main component that picks the appropriate
optimizer and coordinates the pipeline discovery process.
Operator Library. AutoText employs an extensible opera-
tor library, with support for three main operator classes:

• Data Preprocessors – operators that clean and/or trans-
form data to prepare for later processing. These include
tokenization, lemmatization, part-of-speech (POS) tag-
ging, normalization, simplification, spell correction, etc.

• Featurizers – non-trainable (or pretrained) operators that
compute features for use by downstream operators. These
include both classical features, such as tf-idf, and deep
learning-based features, such as embeddings generated
by GloVe, Fast-Text, BERT, RoBERTa, and others.

• Transformers/Estimators – trainable operators that trans-
form data to a new feature space or make final predictions.

7AutoText currently supports binary and multi-class classifica-
tion and will be extended in the future with additional NLP tasks,
such as entity extraction, relationship extraction, and others.

These include classical ML operators (TfIdfTransformer,
SVM, XGBoost, etc.) and deep learning-based operators
(BiLSTM, CNN, BERT, XLNet, DistilBERT, MLP, etc.).

The library can be easily extended with new operators to
further increase the coverage of supported techniques.
Search Specification. AutoText supports two ways to define
the pipeline search space: (1) Declarative Pipeline Compo-
sition: Leveraging the declarative LALE framework (Bau-
dart et al. 2020), AutoText developers can write high-level
specifications of the search space for each pipeline operator,
as well as operator composition rules. (2) Neural architec-
ture search (NAS) enables automatic pipeline composition
for deep learning models.
Optimizers. AutoText combines into a single framework
multiple optimization techniques presented in the literature,
including combined algorithm selection and hyperparameter
tuning (CASH) (Thornton et al. 2013) and NAS (Wistuba,
Rawat, and Pedapati 2019). This is done by integrating mul-
tiple optimizers, each suited to different scenarios, selecting
between them based on heuristics. These include Hyperopt
(Bergstra et al. 2015), Hyperband (Li et al. 2017), ADMM
(CASH optimizer supporting black-box constraints, such as
prediction latency or memory footprint) (Liu et al. 2020),
TAPAS (Istrate et al. 2019), and NeuRex (Wistuba 2018).
Pipeline Selection and Model Tuning. Given a labeled
dataset and optional user options, AutoText employs the ap-
propriate optimizer to iteratively explore different pipeline
configurations. During this process, the optimizer considers
the search specification, potential user constraints, and the
performance of previously explored configurations to deter-
mine the next pipeline to explore. This process continues
until the user-specified constraints are satisfied or after a pre-
determined number of iterations. The resulting pipelines are
then shown on the frontend for the user to inspect.

Demonstration
We will demonstrate AutoText through a variety of datasets,
including standard benchmarks, such as MR (Pang and Lee
2005) and MPQA (Wiebe, Wilson, and Cardie 2005), and
additional data, such as the US Consumer Financial Com-
plaints dataset8. During the demo the audience will be able
to gain the following insights: (a) experience how Auto-
Text allows the quick generation of AI models, (b) under-
stand common components of NLP models and find out
which model architectures work best for particular tasks, by
inspecting the discovered pipelines, and (c) explore trade-
offs made by different estimators (such as the training
time/performance trade-off of classical ML vs deep learn-
ing algorithms (Li et al. 2020)) by customizing the experi-
ment to only consider specific algorithms. Finally, the audi-
ence will also become familiar with AutoText’s architecture
and understand how different AutoAI techniques presented
in the literature have been incorporated into a unified end-
to-end AutoAI framework capable of generating performant
NLP models.

8https://www.kaggle.com/cfpb/us-consumer-finance-
complaints

16002



References
Baudart, G.; Hirzel, M.; Kate, K.; Ram, P.; and Shinnar, A.
2020. Lale: Consistent Automated Machine Learning. In
KDD Workshop on Automation in Machine Learning (Au-
toML@KDD). URL https://arxiv.org/abs/2007.01977.
Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; and Cox,
D. D. 2015. Hyperopt: a Python Library for Model Selection
and Hyperparameter Optimization. Computational Science
& Discovery 8(1). URL http://dx.doi.org/10.1088/1749-
4699/8/1/014008.
He, X.; Zhao, K.; and Chu, X. 2019. AutoML: A Survey of
the State-of-the-Art. ArXiv abs/1908.00709.
Hutter, F.; Kotthoff, L.; and Vanschoren, J. 2019. Automated
machine learning: methods, systems, challenges. Springer
Nature.
Istrate, R.; Scheidegger, F.; Mariani, G.; Nikolopoulos,
D. S.; Bekas, C.; and Malossi, A. C. I. 2019. TAPAS: Train-
less Accuracy Predictor for Architecture Search. In AAAI.
Li, J.; Li, Y.; Wang, X.; and Tan, W.-C. 2020. Deep or Sim-
ple Models for Semantic Tagging? It Depends on your Data.
Proceedings of the VLDB Endowment 13(11).
Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; and
Talwalkar, A. 2017. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. The Journal of Ma-
chine Learning Research 18(1): 6765–6816.
Liu, S.; Ram, P.; Vijaykeerthy, D.; Bouneffouf, D.; Bram-
ble, G.; Samulowitz, H.; Wang, D.; Conn, A.; and Gray,
A. G. 2020. An ADMM Based Framework for AutoML
Pipeline Configuration. In Conference on Artificial Intelli-
gence (AAAI), 4892–4899. URL https://aaai.org/ojs/index.
php/AAAI/article/view/5926.
Mao, Y.; Wang, D.; Muller, M.; Varshney, K. R.; Baldini, I.;
Dugan, C.; and Mojsilović, A. 2019. How Data Scientists
Work Together With Domain Experts in Scientific Collab-
orations: To Find The Right Answer Or To Ask The Right
Question? Proceedings of the ACM on Human-Computer
Interaction 3(GROUP): 1–23.
Pang, B.; and Lee, L. 2005. Seeing Stars: Exploiting Class
Relationships for Sentiment Categorization with Respect to
Rating Scales. In Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics (ACL’05),
115–124. Ann Arbor, Michigan: Association for Compu-
tational Linguistics. doi:10.3115/1219840.1219855. URL
https://www.aclweb.org/anthology/P05-1015.
Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K.
2013. Auto-WEKA: Combined selection and hyperparam-
eter optimization of classification algorithms. In Proceed-
ings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, 847–855.
Wang, D.; Ram, P.; Weidele, D. K. I.; Liu, S.; Muller, M.;
Weisz, J. D.; Valente, A.; Chaudhary, A.; Torres, D.; Samu-
lowitz, H.; et al. 2020. AutoAI: Automating the End-to-End
AI Lifecycle with Humans-in-the-Loop. In Proceedings of
the 25th International Conference on Intelligent User Inter-
faces Companion, 77–78.

Wang, D.; Weisz, J. D.; Muller, M.; Ram, P.; Geyer, W.;
Dugan, C.; Tausczik, Y.; Samulowitz, H.; and Gray, A. 2019.
Human-AI Collaboration in Data Science: Exploring Data
Scientists’ Perceptions of Automated AI. Proceedings of
the ACM on Human-Computer Interaction 3(CSCW): 1–24.
Weidele, D. K. I.; Weisz, J. D.; Oduor, E.; Muller, M.; An-
dres, J.; Gray, A.; and Wang, D. 2020. AutoAIViz: opening
the blackbox of automated artificial intelligence with condi-
tional parallel coordinates. In Proceedings of the 25th In-
ternational Conference on Intelligent User Interfaces, 308–
312.
Wiebe, J.; Wilson, T.; and Cardie, C. 2005. Annotating ex-
pressions of opinions and emotions in language. Language
resources and evaluation 39(2-3): 165–210.
Wistuba, M. 2018. Deep Learning Architecture Search by
Neuro-Cell-Based Evolution with Function-Preserving Mu-
tations. In ECML/PKDD.
Wistuba, M.; Rawat, A.; and Pedapati, T. 2019. A Survey on
Neural Architecture Search. CoRR abs/1905.01392. URL
http://arxiv.org/abs/1905.01392.

16003


