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Abstract

Safety properties of neural networks are critical to their ap-
plication in safety-critical domains. Quantification of their
robustness against uncertainties is an upcoming area of re-
search. In this work, we propose an approach for providing
probabilistic guarantees on the performance of a trained neu-
ral network.
We present two novel metrics for probabilistic verification
on training data distribution and test dataset. Given a trained
neural network, we quantify the probability of the model to
make errors on a random sample drawn from the training data
distribution. Second, from the output logits of a sample test
point, we measure its p-value on the learned logit distribu-
tion to quantify the confidence of the model at this test point.
We compare our results with softmax based metric using the
black-box adversarial attacks on a simple CNN architecture
trained for MNIST digit classification.

Introduction
Neural networks are increasingly becoming a crucial com-
putational component of modern software. With their
widespread adoption, it has become essential that we ensure
(or at least gain confidence in) the correctness of neural net-
works, as we do with traditional programs. However, pro-
viding formal specifications of correctness is an even more
challenging task for neural networks than for traditional pro-
grams, as neural networks are explicitly designed to learn
patterns in training data that are not readily apparent to hu-
mans (Fazlyab, Morari, and Pappas 2019; Henriksen and
Lomuscio 2019). In this paper, we step in the direction of
probabilistic verification of learned models.

Background
We are going to construct our formulation of probabilistic
verification with the notion of logits being random variables.
Random variable is a function that assigns values to each of
an experiment’s outcomes. This function will be our Neural
Network.

Studying the distribution of logits of various classes on
MNIST dataset trained on a simple convolutional neural net-
work, we found out these distributions to be Gaussian for
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both correct and false logit classes. Refer to Figure 1. This
experiment motivates us to assume that a trained neural net-
work learns Gaussian distributions in logit space that are in-
dependent which is justifiable in the paradigm of i.i.d train-
ing data. This assumption forms the basis of our method pre-
sented in the next section.

Method
We propose two metrics for probabilistic error quantification
of the model hypothesis on training dataset and input test
sample.

Through these metrics, first, we quantify how good is the
hypothesis learnt on the dataset and then increase the relia-
bility for out-of-distribution sample or adversarial example
for the hypothesis to predict wrong class with high confi-
dence.

Dataset Centric We can take any dataset and a trained
model on it. The idea is when we draw a random sample
from the dataset distribution, what is the probability that the
hypothesis (trained model) will misclassify it. It is different
from accuracy since accuracy is a discrete sample match-
ing, but it is based on the overlap of the PDF of logit distri-
bution. Formally, if Z is the logit vector, X be the correct
logit element and Y be any other logit element, we want
P (X <= Y + δ) where a δ can be included to ensure mar-
gin like maximum margin classifiers.

Note by our previous assumption, both random variables
X and Y follow Gaussian distribution. So, P (X − Y <=
δ) = Φ[(δ−µ)/σ] is Gaussian CDF with mean µ = µx−µy

and variance σ2 = σ2
x + σ2

y where X ∼ N(µx, σx) and
Y ∼ N(µy, σy).

Now for a k class logit vector Z, we have k-1 such
comparisons, say A1, A2, ...Ak−1. We need to calculate
P (∪k−1

i=1Ai) which can be done using inclusion exclusion
principle. For all the experiments in results section, δ = 0.

Sample Centric The previous proposed method measures
trust over entire dataset distribution which the neural net-
work has learnt. However, sample centric approach can pre-
dict class and quantify model’s confidence for its prediction
on encountering a new sample point while testing. Currently
in the literature, for classification, argmax over logits is per-
formed to predict correct class or softmax to get the confi-
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Figure 1: Shows distributions of logits as Gaussian PDF. Red
PDF are for false logits and Green is for true logit. Overlap
of red PDF with green shows error regions of hypothesis.

Figure 2: Shows learned PDF of logit Z and calculation of
p-value for test logit output z0.

dence of the prediction. We propose to use the 2-sided p-
value measure for statistical significance of the input sample
utilising the information of the learned distribution of logit
vector while training.

Formally, when a data point X arrives, feed forward
through the network to predict the logit vector z. We then
compute p-value statistic of this vector z with our saved dis-
tribution parameter vector of correct µi and σi for all class
i and return a vector whose elements are the p-value mea-
sure of each k-class distribution. Figure 2 shows the p-value
calculation method used in experiments.

Results
We performed experiments on the MNIST dataset, where
we trained a simple CNN architecture ( 380k parameters) to
99% test accuracy.

Using the first method, we evaluated this model to have
25.63% error (upper bound) at δ = 0 data distribution. The
logits PDF distribution is shown in Figure 2, and it validates
our assumption of the independent Gaussian distribution of
logits.

Then using the second method, we evaluated test samples
and recovered 94.56% correct targets by taking argmax over
p-value vector. Our method becomes very useful in case of
a safety-critical system, where a false prediction with high
confidence is undesirable. So, we compared the softmax
prediction and p-value prediction on two adversarial attacks
methods, viz. Fast Gradient Sign Method (FGSM) (Good-
fellow, Shlens, and Szegedy 2015) attack and Projected

softmax err 4524 Total samples 10k
p-value err 6221 Total samples 10k
Metric conf > 0.5 conf > 0.9 conf > 0.99
Softmax err 4402 2860 1682
p-value err 1640 303 27

Table 1: Fast Gradient Sign black-box untargeted attack

softmax err 5418 Total samples 10k
p-value err 5652 Total samples 10k
Metric conf > 0.5 conf > 0.9 conf > 0.99
Softmax err 5402 4127 2566
p-value err 1170 208 24

Table 2: Projected Gradient Descent black-box untargeted
attack

Gradient Descent (PGD) (Madry et al. 2018) attack used
in a black-box & untargeted fashion. We evaluated on 10k
test-samples of MNIST and summarised the results of the
two algorithm in Table 1 & 2 respectively.

In PGD attack, total errors are similar, but p-value gives
significantly fewer sample errors with high confidence w.r.t
softmax. Thus our metric measures can more reliably be
trusted.
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In this paper, we proposed a two-level of quantification
method of robustness. First, where we test the hypothesis
which the model has learnt to represent data and the second
where once a hypothesis is given, we measure out of learned
logit distribution.

We are actively working on making a probabilistic driven
training approach based on our first method, where we will
learn the desired confident representation automatically.
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