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Abstract

We introduce a novel technique that uses a multi-headed neu-
ral network to analyze symmetric games with a variable num-
ber of players, where the number of participants falls in a
specified range. We hypothesize that the payoffs in a game
with x players are similar or related to the same game with
x ± 1 players, given a large value of x. With this hypothe-
sis, we generalize prior work to analyze games with a large,
variable number of players.

Game theory is the branch of economics that aims to un-
derstand self-interested agents interacting and making de-
cisions. The normal-form representation of simultaneous
move games is a mathematical model of incentives. This
model includes a fixed set of players, their corresponding
strategy sets, and a payoff matrix that describes each player’s
payoff function. Using this model we can approximate Nash
equilibria in the game, which are predictions about behavior
in the real-world interaction. Because the interaction we are
studying might have an uncertain number of participants, a
game with a fixed number of players might be an insufficient
model. Thus we focus on analyzing games with a variable
number of players, where the number of players falls in a
specified range.

In real-world settings it is also likely that the number
of participants is large. Sokota et al. (2019) apply machine
learning techniques to analyze games with a large number
of players. We hypothesize that the payoffs in a game with x
players are similar or related to the payoffs in the same game
with x±1 players, given a large value of x. With this hypoth-
esis, we generalize Sokota, Ho, and Wiedenbeck’s results to
analyze games with a large, variable number of players. The
new goal is to develop analyses that accommodate this un-
certainty in the number of players, such as finding equilibria
that are robust within the range of possible player values.

Our techniques are particularly relevant for analyzing
simulation-based games, where the payoff matrix is not
known in advance but can be filled through a series of multi-
agent simulations. Because mathematical models often re-
quire greater precision or a deeper understanding of the in-
teraction than is feasible, simulation-based game theory is
a realistic alternative that utilizes agent-based modeling to
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construct a game-theoretic model.
For example, Wah and Wellman (2016) construct a

simulation-based game to analyze the effects of latency arbi-
trage in financial markets. They analyze the same game with
a variable number of background traders (24, 58, 238), but
analyze each instance of the game separately. For each of the
three instances, they find symmetric equilibria in the game
and then evaluate background-trader surplus and latency ar-
bitrageur profit (if applicable) to conclude that latency ar-
bitrage reduces surplus overall. Using our techniques, Wah
and Wellman could analyze the entire game at once, with the
number of players ranging from 24 to 238, instead of analyz-
ing each instance separately. The hope is that having equi-
libria that are robust within the range of player values will
enable more meaningful analysis of and predictions about
real-world games.

Related Work
The normal-form payoff matrix stores each player’s payoff
for every possible combination of actions the players can
simultaneously play. As the number of players increases,
the size of the payoff matrix increases exponentially. While
there are many compact representations of games, they gen-
erally require some knowledge about the underlying struc-
ture of the game, which is not known in simulation-based
settings. Several papers have addressed this issue by learn-
ing game models from data (Areyan Viqueira et al., 2020;
Wiedenbeck et al., 2018; Sokota et al., 2019).

In particular, Sokota et al. (2019) use a neural network
to learn the deviation payoff function. A deviation payoff is
the expected payoff a player would receive by deviating or
changing strategies, given the mixed strategies everyone else
is playing. This learned deviation payoff function is used
in Nash-finding algorithms to find approximate equilibria
in simulation-based games with a large number of players,
without constructing an explicit payoff table.

While several papers consider the same game with a dif-
ferent number of players (Tuffin and Maillé 2006; Honorio
and Ortiz 2015; Petruzzi, Pitt, and Busquets 2017), the au-
thors do so to validate the scalability of their model and not
as the focus of their analysis. We believe that this demon-
strates a need for analysis that spans different numbers of
players and that our techniques would be applicable.
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Learning Model
Sokota et al. (2019) use a multi-headed neural network to
learn the deviation payoff function for games with a fixed
number of players. Games with a variable number of players
essentially have a different, but related, payoff function for
each instance of the game within the player value range. As
a result, the learning problem is much more complex.

Our preliminary results indicate that it is possible to learn
the deviation payoff function for the entire game with an
added input dimension specifying the number of players. We
have evaluated network performance on 50 randomly gener-
ated symmetric games (from game classes used in prior lit-
erature) with 3 and 5 strategies and a player range of 50 to
100. We achieve decent deviation payoff approximations by
training on about half as much data as we would need if we
trained each instance separately. However, there is room for
improvement by continuing to optimize the hyperparame-
ters and determining how and when to refit the network after
running the Nash-finding algorithm.

Equilibrium Robustness
Typical game-theoretic analysis involves finding approxi-
mate Nash equilibria in a game with a fixed number of play-
ers. However, in games with a variable number of players,
finding approximate Nash equilibria for the entire game is
not as straightforward. For example, an approximate equi-
librium in one instance of the game might not be an approx-
imate equilibrium in any other instances and therefore it is
not a good prediction of a stable state of the game. Thus we
seek to find a metric to evaluate the robustness of a candi-
date equilibrium, or the stability of an equilibrium across all
instances of the game.

We have considered two metrics to evaluate whether a
profile is an equilibrium across the range of player values:
average regret and equilibrium frequency. Regret is the max-
imum payoff amount any player can gain by deviating to any
other strategy. The regret of a candidate Nash equilibrium is
computed for each instance of the game and then averaged.
If the average regret falls under some specified regret thresh-
old, we say the candidate equilibrium is a robust equilibrium
in the game. While in many cases this metric properly filters
out mixed strategies that are not robust across all instances,
it is possible that this metric filters out a candidate equilib-
rium that is indeed robust. For example, a candidate Nash
equilibrium might be an approximate Nash equilibrium for
many instances of the game but have a high enough regret
for one or a few instances and thus not be classified as a
robust approximate equilibrium based on average regret.

The equilibrium frequency metric involves counting the
number of instances in which the candidate Nash equilib-
rium is an approximate equilibrium, and if the count is
higher than some threshold, then the candidate equilibrium
is a robust equilibrium in the game. This metric does not
overpenalize a candidate equilibrium for having a high re-
gret for a few instances but being a good approximate Nash
equilibrium overall. Figure 1 shows how many times each
mixture in the simplex was an approximate equilibrium (for
a fixed ε) in a randomly generated 3-strategy game with

Figure 1: Approximate equilibrium frequency simplex

50 to 100 players. Each point in the simplex corresponds
to a symmetric mixed strategy, and the color shows how
many times that profile was an approximate equilibrium.
The white points in the simplex correspond to profiles that
were never approximate Nash equilibria, and the brighter
points correspond to mixed strategies that were approximate
Nash equilibria in many instances of the game.

Ongoing Work
We are currently exploring how to extend our method to gen-
eralize over other continuous parameters of the simulation
environment. We are also exploring other robustness metrics
that are specific to the context of a given real-world game.
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Tuffin, B.; and Maillé, P. 2006. How many parallel TCP
sessions to open: A pricing perspective. In Performability
Has its Price, 2–12. Springer Berlin Heidelberg.
Wah, E.; and Wellman, M. P. 2016. Latency arbitrage in
fragmented markets: A strategic agent-based analysis. Al-
gorithmic Finance 5(3-4): 69–93.
Wiedenbeck, B.; Yang, F.; and Wellman, M. P. 2018. A re-
gression approach for modeling games with many symmet-
ric players. In AAAI, 1266–1273.

15961


