
Local Search for Diversified Top-k s-plex Search Problem (Student Abstract)

Jun Wu, Minghao Yin∗

School of Information Science and Technology, Northeast Normal University,
Changchun, 130117, China
{wuj342,ymh}@nenu.edu.cn

Abstract

The diversified top-k s-plex (DTKSP) search problem aims
to find k maximal s-plexes that cover the maximum number
of vertices with lower overlapping in a given graph. In this
paper, we first formalize the diversified top-k s-plex search
problem and prove the NP-hardness of it. Second, we pro-
posed a local search algorithm for solving the diversified top-
k s-plex search problem based on some novel ideas. Exper-
iments on real-world massive graphs show the effectiveness
of our algorithm.

Introduction
Recently, many researchers have studied some versions of
the diversified top-k search problem because of its wide ap-
plications in which researchers always have a need for ob-
taining diverse high-quality solutions to increase flexible re-
sults. Among these different versions, the diversified top-
k clique (DTKC) search problem (Wu et al. 2020) has al-
ready been applied in different fields. However, lots of real-
world applications in network analysis and data mining fail
to model the clique, due to the strong conditions of the
clique itself. Thus, in this paper, we mainly focus on solv-
ing the diversified top-k s-plex (DTKSP) search problem,
which can be seen as a generalization version of the DTKC
search problem. For example, soc-twitter-follows (Rossi and
Ahmed 2015) is a social media follow relationship that in-
cludes a follow network and a dataset that contains a list
of all user-to-user links. We set users as vertices and user-
to-user links as edges in a graph G. Therefore, a maximal
s-plex in G represents a core group and some important fol-
lowers; the DTKSP in the given graph represents the top-k
maximal divisive core groups and their followers. This can
facilitate determining the top-k core groups with great influ-
ence on Twitter.

In this paper, we first construct the formulation for the
DTKSP search problem and then prove its NP-hardness.
Moreover, we design an encoding for this problem and then
propose an effective local search algorithm. The experiments
are carried out on a wide range of massive graphs to evaluate
the effectiveness of our algorithm.

∗Corresponding Author
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Diversified Top-k s-plex Search Problem
Given an undirected graph G = (V,E) with a vertices set
V and a edges set E, where V = {v1, . . . , vn} and E =
{e1, . . . , em}. Let N(u) denote a set of neighbours of the
vertex u, i.e., N(u) = {v|(v, u) ∈ E and v, u ∈ V }, and
N [u] = N(u) ∪ {u}. Given a graph G, s-plex is a subset
D ⊆ V such that each vertex in D must be nonadjacent to
at most s vertices in the subgraph induced by D. A maximal
s-plex is an s-plex that cannot be extended to any other s-
plex of G. For a set of maximal s-plexes S = {c1, c2, . . . },
the coverage of S, denoted by cov(S), is the set of vertices
covered by S, i.e., cov(S) =

⋃
ci∈S ci. The private vertices

of a maximal s-plex c, denoted by priv(c, S), is a subset
of vertices of c not contained in any other s-plex in S, i.e.,
priv(c, S) = c \ cov(S \ c). Given two integers k and s,
the DTKSP search problem is to find a set of S of at most
k maximal s-splexes with the largest coverage cov(S) and
keep a lower overlapping cov(S) \ ∪ci∈Spriv(ci, S).

Constraint Formulation for the DTKSP Search
Problem
The DTKSP search problem involves finding at most k s-
plexes of maximum cardinality with lower overlapping from
a given graph. It can be formulated as a mixed integer linear
program (MILP) as follows:

OBJ1 : max ω1(G) =
∑
i∈V

Xi (1)

OBJ2 : min ω2(G) =

∑k
h=1

∑
i∈V xih −

∑
i∈V Xi

k − 1
(2)

subject to:∑
j∈V \N [i]

xjh ≤ (s− 1)xih + d̄i(1− xih),

∀i ∈ V, 1 ≤ h ≤ k

(3)

Xi ≤
∑
i∈V

xih, ∀i ∈ V, 1 ≤ h ≤ k (4)

xih ∈ {0, 1}, ∀i ∈ V, 1 ≤ h ≤ k (5)

Xi ∈ {0, 1}, ∀i ∈ V (6)

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15929

where xih is the binary variable associated with vertex i,
such that xih = 1 if vertex i is in the h’th s-plex, xih = 0
otherwise. d̄i = |V \ N [i]| denotes the degree of vertex i
in the complement graph Ḡ = (V, Ē). Xi is also a binary
variable associated with vertex i. Xi = 1 if there exists a
vertex i in an s-plex, Xi = 0 otherwise.

According to the definition of the DTKSP search prob-
lem, this problem needs two objective functions. The first
(OBJ1) is to keep at most k s-plexes with maximum cardi-
nality. And, the second (OBJ2) is to find a lower overlapping
solution under the premise of objective OBJ1.

NP-hardness of the DTKSP Search Problem
Proposition 1 The DTKSP search problem is an NP-hard
problem.

Proof. We prove Proposition 1 by reducing one NP-hard
problem to the DTKSP search problem. As is well known,
the max k-cover problem is a classical NP-hard problem.
Given two integers k and s, a set U of n elements, and a
collection S = {S1, S2, . . . , Sh} of h subsets of U , the max
k-cover problem is to select k subsets from S such that their
union has the maximum cardinality. We can reduce the max
k-cover problem to the DTKSP search problem as follows.

1. For each element in U , create a vertex.
2. Create at least (|Si| − s) edges connecting with others for

each vertex in each subset Si.

Clearly, the above procedure is polynomial. In this case,
solving the DTKSP search problem is equivalent to finding
k subsets of S such that their union has the maximum car-
dinality and then keeping the crossover between the k sets
is minimum. Thus, we can conclude that the DTKSP search
problem is an NP-hard problem. 2

The TOPKSPLEX Algorithm
As shown in Algorithm 1, it consists of the construction (line
3) and updating stages (lines 5-12). Each time, the algorithm
constructs a new s-plex starting from the candidate vertices
(V \S), S is the current solution. Then TOPKSPLEX tries to
add this new s-plex into the current solution S and remove
the worst one by calculating the value of |priv(ci, S)| as a
score for each s-plex in S (lines 7-9). If the current solution
S can not be updated in L steps, the inner loop will be termi-
nated. After that, if a better solution is found, S∗ is updated
by S (line 12). Then restart the algorithm until the cutoff
time is out. In our experiments, L is initialized to 1000.

Experimental Evaluation
We carry out experiments in TOPKSPLEX on real-world
massive graphs (Rossi and Ahmed 2015). We downloaded
the benchmarks from the author’s website1; these have re-
cently been used in testing the performance of local search
methods. Due to there is no other algorithm that can be
compared, we used the solutions obtained from the CPLEX
solver (version 12.9) as a reference on the solution quality
with the mathematical model presented in this paper. For

1http://lcs.ios.ac.cn/∼caisw/graphs.html

Algorithm 1: TOPKSPLEX(G, s, k, cutoff)
Input: Problem instance G(k, s), the maximum

allowed iteration in the update search L,
cutoff time

Output: a set S∗ containing at most k maximal
s-plexes with a lower overlapping

1 S∗ ← ∅;
2 while elapsed time < cutoff do
3 Constructing a good quality solution S with at

most k s-plexes;
4 S

′ ← S, l← 0;
5 while l < L do
6 Constructing a new s-plex cnew;
7 S

′
= S

′ ∪ {cnew};
8 Updating the score for each s-plex in S

′
;

9 S
′ ← S

′ \ cworst;
10 if |cov(S

′
)| > |cov(S)| then S ← S

′
,l← 0 ;

11 else l← l + 1;
12 if |cov(S)| > |cov(S∗)| or (|cov(S)| =

|cov(S∗)| and | ∪ci∈S priv(ci, S)| >
| ∪cj∈S∗ priv(cj , S

∗)|) then S∗ ← S ;
13 return S∗; /* return the best solution found */

Benchmark
TOPKSPLEX CPLEX

#Better #N/A #Better #N/A

Massive(139)

s=2 537 0 17 51
s=3 536 0 6 51
s=4 538 0 3 51
s=5 534 0 1 51

Table 1: Summary of comparison between TOPKSPLEX
and CPLEX on massive graphs.

each instance, our algorithm is performed on 10 indepen-
dent runs with a cutoff time (360s). For CPLEX solver, a
cutoff time of one hour was used.

There are 139 graphs in our experiments. We set the pa-
rameter k to 10, 20, 30, 40 and parameter s to 2, 3, 4, 5
for each graph. Hence, we totally have 2224 DTKSP search
problem instances. The summary results are shown in Ta-
ble 1. #Better and #N/A indicate the number of instances
where an algorithm finds better solutions or fails to solve the
instances, respectively. CPLEX can solve 2020 instances.
TOPKSPLEX obtains better or same solutions than solu-
tions as CPLEX on 1993 instances. On the other 27 in-
stances, TOPKSPLEX obtains the solutions with small gaps.

References
Rossi, R.; and Ahmed, N. 2015. The network data repos-
itory with interactive graph analytics and visualization. In
Twenty-Ninth AAAI Conference on Artificial Intelligence.
Wu, J.; Li, C.-M.; Jiang, L.; Zhou, J.; and Yin, M. 2020. Lo-
cal search for diversified Top-k clique search problem. Com-
puters & Operations Research 116: 104867.

15930

