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Abstract

Partially observable Markov decision process (POMDP) is an
extension to MDP. It handles the state uncertainty by speci-
fying the probability of getting a particular observation given
the current state. DESPOT is one of the most popular scal-
able online planning algorithms for POMDPs, which man-
ages to significantly reduce the size of the decision tree while
deriving a near-optimal policy by considering only K sce-
narios. Nevertheless, there is a gap in action selection crite-
ria between planning and execution in DESPOT. During the
planning stage, it keeps choosing the action with the high-
est upper bound, whereas when the planning ends, the action
with the highest lower bound is chosen for execution. Here,
we propose LB-DESPOT to alleviate this issue, which uti-
lizes the lower bound in selecting an action branch to expand.
Empirically, our method has attained better performance than
DESPOT and POMCP, which is another state-of-the-art, on
several challenging POMDP benchmark tasks.

Introduction
The partially observable Markov decision process (POMDP)
provides a mathematical framework for modeling sequential
decision-making problems with uncertainty in state transi-
tion and observation (Kochenderfer 2015). Due to the over-
whelming computational complexity of POMDPs, online al-
gorithms are indispensable, especially when solving large-
scale problems. Because rather than solving for a globally
optimal policy, they only try to find an acceptable local pol-
icy for the current belief, and therefore significantly relieves
the computational overload. DESPOT (Ye et al. 2017) is a
state-of-the-art online planing algorithm, which derives its
name from the fact that it solves for a near-optimal policy by
constructing a determinized sparse partially observable tree.
One central idea in DESPOT is using branch-and-bound
to accelerate the searching process and find a near-optimal
action for execution. It maintains upper and lower bounds
of state-action value for each action. During the planning,
DESPOT selects the action with the highest upper bound
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Laser Tag Drone Roomba

DESPOT −10.86± 0.06 10.62± 0.05 −2.12± 0.01

POMCP −16.34± 0.06 10.42± 0.04 −2.30± 0.01

Value LB − 9.79± 0.06 10.65± 0.05 −2.09± 0.01

Prob LB −10.80± 0.06 11.08± 0.05 −2.06± 0.01

Rank LB − 9.44± 0.06 11.08± 0.05 −1.97± 0.01

Note: Value (Prob, Rank) LB=Value (Probability, Ranking)-based LB-DESPOT

Table 1: Performance comparison
for expansion. When the planning ends, the action with the
highest lower bound is chosen for execution.

Given infinite planning time, the upper bound based
search strategy is guaranteed to find an optimal action;
nonetheless, the planning time is always limited in online
planning. When the planning time is limited, DESPOT can-
not fully explore branches with a potential high lower bound,
since it always expands the action branch with the highest
upper bound, which eventually leads to an inferior action.
This paper proposes a new method, LB-DESPOT, to im-
prove the action selection in DESPOT. LB-DESPOT takes
advantage of not only the upper bound but also the lower
bound to select an action branch during the exploration and
therefore clears the gap of selection criteria between plan-
ning and execution, leading to better performance.

Methods
In the section, we present three different implementations of
LB-DESPOT while providing empirical analysis for each.

Value-based LB-DESPOT is a direct method which sim-
ply chooses an action branch according to the weighted sum
of the lower and upper bounds, i.e.,

a∗ = argmax
a∈A

(β · `(b, a) + µ(b, a)) , (1)

where `(b, a) and µ(b, a) are the lower and upper bounds of
the action a at belief b respectively, and β is a coefficient for
adjusting the participation of the lower bound. However, this
method suffers from the problem of instability, as a β shared
across all belief nodes will not suit all of them. A reasonable
choice of β should make sure β · `(b, a) and µ(b, a) being
comparable, i.e., in the same order of magnitude. When the
orders of magnitude of the lower and upper bounds are sim-
ilar, a β close to 1 might suffice. Yet when the upper bound
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Laser Tag RS(7,8) RS(11,11) RS(15,15) Drone Surveillance Roomba

DESPOT −12.95± 0.07 6.73± 0.06 5.46± 0.05 4.27± 0.05 10.36± 0.05 −2.36± 0.01

LB-DESPOT −11.88± 0.06 7.77± 0.06 7.88± 0.06 6.95± 0.06 10.47± 0.05 −2.37± 0.04

Note: RS(n,m) stands for the Rock Sample with n× n map andm rocks.

Table 2: Empirical results when a shoddy lower bound generated by the rollout of the random policy is given

is several orders of magnitude greater than the lower bound,
the value of a suitable β could change significantly. Consid-
ering that it is common for the lower or upper bound being
close to 0, which means the order of magnitude could vary
significantly, the performance of this method can be unpre-
dictable.

Probability-based LB-DESPOT chooses an action ac-
cording to the lower bound solely with a probability β:

a∗ = ξ > β ? argmax
a∈A

µ(b, a) : argmax
a∈A

`(b, a), (2)

where ξ ∼ Uniform(0, 1). This method does not suffer
the instability numerically, but features the inborn random-
ness, behaving unpredictably in practice. So it is less prefer-
able.

Ranking-based LB-DESPOT is the final choice of im-
plementation for LB-DESPOT. It exploits the ranking of
bounds to determine the action branch to expand. Firstly,
it ranks all available action branches with respect to the
lower and upper bounds, respectively. Then, it chooses an
action branch to expand in agreement with the comprehen-
sive rankings, i.e.,

a∗ = argmax
a∈A

(
β · rank`b,a+rankµb,a

)
, (3)

where rankµb,a and rank`b,a are the descending rankings of
the action a in terms of upper and lower bounds of belief
b, respectively. Specifically, in rank`b,a, the action with the
highest lower bound is set to rank last so that it is precluded
from being chosen. Because choosing the action with the
highest lower bound continually will sometimes cause the
algorithm to get stuck in a local optimum.

Experiments
In this section, we experiment on four challenging POMDP
benchmark experiments: Laser Tag (|S| = 4, 830, |A| = 5,
|Z| ≈ 1.5× 106), Drone Surveillance (|S| = 625, |A| = 5,
|Z| = 10), Roomba (|S| = ∞, |A| = 6, |Z| = 11),
and Rock Sample (|S| and |A| vary in different settings,
|Z| = 3). Please see (Ye et al. 2017) for detailed descrip-
tion of these problems. Here, S , A, and Z represent state,
action, and observation spaces in a POMDP model, respec-
tively, and | · | stands for the cardinality of a set. We com-
pare the performance of LB-DESPOT with DESPOT and
POMCP (Silver and Veness 2010). For each algorithm, the
best heuristic and hyperparameter set are found beforehand.
Specifically, we implement both the upper bound and de-
fault policy for DESPOT and LB-DESPOT in each problem.
For POMCP, the rollout policy and the initializer of Ninit
and Vinit are provided. The regularization parameter λ is se-
lected from the set {0.0, 0.01, 0.1, 1.0, 10.0}, and the num-
ber of scenarios K from {30, 100, 300, 1000, 3000}. The

best lower bound participation parameter β for LB-DESPOT
is selected from {0.0, 0.1, 0.3, 1.0}. All the parameter selec-
tions are conducted in a different experimental setting from
the one used for testing. During testing, experiments are con-
ducted 100 episodes per problem, with the max step being
100 steps, and algorithms are allocated 1 second per step
for planning. In the tables, the average discounted returns
are shown along with the corresponding standard errors of
mean (SEM) in the form of Return± SEM.

As shown in Table 1, all three implementations of LB-
DESPOT outperform DESPOT and POMCP. Among them,
the ranking-based LB-DESPOT performs best; hence, it is
chosen as the final implementation. The data on Rock Sam-
ple is not presented, because in Rock Sample, when a good
lower bound is given, any participation of lower bound in
action selection will incur degeneration of performance, of
which we are still working on a satisfactory explanation.

Furthermore, we conduct another set of experiments to
show that the greedy search strategy of LB-DESPOT works
even when a shoddy initial lower bound is given. The ex-
perimental results are demonstrated in Table 2, where the
initial lower bounds of DESPOT and LB-DESPOT are set
as the rollout of the random policy. The results show that the
greedy search strategy can work independent of the lower
bound and provide an improvement over DESPOT, though a
high-quality lower bound is always beneficial.

Future Work
One direction for our future work is to adjust the β dynam-
ically according to the remaining time of planning. Since
choosing an action according to lower bounds is a greedy
way of searching, it might be wiser if the lower bound partic-
ipation is adjusted according to the remaining time of plan-
ning. The lesser the remaining time is, the greater the partic-
ipation should be.

Another promising direction is to improve the expansion
of the observation branch. Our focus now is on the method,
PLEASE, proposed in Zhang et al. (2015), which allows the
selection of more than one observation branch when their
potential impacts are close.
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