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Abstract

Policy Shaping (Griffith et al. 2013), is a Human-in-the-loop
Reinforcement Learning (HRL) algorithm. We extend this
work to continuous states with our algorithm, Deep Policy
Shaping (DPS). DPS uses a feedback neural network that
learns the optimality of actions from noisy feedback com-
bined with an RL algorithm. In simulation, we find that DPS
outperforms or matches baselines averaged over multiple hy-
perparameter settings and varying feedback correctness.

Introduction
Many HRL methods have made the leap to large state spaces
(Warnell et al. 2018; Xiao et al. 2020; Arakawa et al. 2018;
Arumugam et al. 2019). However, many of these methods
use human feedback without a reward function, use the feed-
back to shape the reward, or do not consider noisy feed-
back. We introduce Deep Policy Shaping (DPS), which com-
bines information from a feedback-generalizing neural net-
work with an off-policy RL algorithm (Figure 1). To account
for noisy feedback, we use techniques from deep learning
with noisy labels, specifically modifying the loss function
to reflect feedback confidence (Mnih and Hinton 2012). To
improve the quality of our feedback generalization’s uncer-
tainty estimates, we use deep ensembles, which use a shared
base to reduce computation and reuse signal, as used in an-
other HRL algorithm, FRESH (Xiao et al. 2020). We com-
pare DPS to baselines, varying the proportion of correct
feedback. As DPS is designed to work with people, optimiz-
ing hyperparameter settings prior to learning may be impos-
sible. We find that DPS outperforms or matches baselines on
average over multiple hyperparameter settings.

Background
Some prior work in deep HRL uses human input as the only
reward (Warnell et al. 2018; Arumugam et al. 2019), or uses
feedback to shape the reward function (Xiao et al. 2020).
Differing from both, DPS interprets feedback as input on
the policy. There is prior work on interpreting the feedback
as policy information, for example the original Policy Shap-
ing method (Griffith et al. 2013). A method of integrating
TAMER feedback with reward (Knox and Stone 2010) was
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Figure 1: Deep Policy Shaping Pipeline.

extended to deep learning with DQN-TAMER (Arakawa
et al. 2018). Unlike DQN-TAMER, DPS approximates the
probability of optimal actions from feedback, allowing noisy
feedback. Also, DPS multiplies the distributions from its
feedback network with the RL algorithm output, applicable
to any RL method that generates action distributions.

Method
The original Policy Shaping interprets feedback as a state-
ment on the optimality of an action in a state (Griffith et al.
2013). This interpretation allows the derivation of a closed-
form expression for the probability of the optimality of an
action based on feedback. Computing the probability of op-
timality requires feedback on that state action pair, otherwise
the expression reduces back to the uniform prior. However,
in continuous and high dimensional state spaces, many states
that the agent sees will likely have not received feedback. In
DPS, we use a neural network to approximate the condi-
tional probability of an action’s optimality in a state given
feedback: P (a is optimal|s, a,D). The state is given as in-
put to the neural network and each action has its own corre-
sponding sigmoid head. To account for a priori information
on the consistency of feedback with the true optimality of
a state-action pair, we model the ground truth optimality as
a latent random variable and derive the likelihood that our
estimate of the probability of optimality produced the feed-
back received (Mnih and Hinton 2012):
L(y|h) = yCh(1− C)1−h + (1− y)C1−h(1− C)h (1)

where h is feedback, C is the consistency of the feedback
with the true optimality, and y is the probability that the ac-
tion is optimal. As with binary cross entropy loss, we can
take the negative of the log-likelihood as our loss function.

Deep Policy Shaping is meant to shape the exploration
of any off-policy RL algorithm. For all the experiments we
use a Deep Q Network (DQN) for RL with Boltzmann ex-
ploration. To avoid adverse effects of overfitting, we reduce
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P DPS TAMER DQN DPS vs DQN TAMER vs DQN DPS vs TAMER ANOVA

1 15763951.1 14200672.6 13547898.6 p < 0.005 p = 0.074244 p < 0.005 p < 0.001
0.75 14139224.6 13625897.1 13547898.6 p = 0.068316 p = 0.899995 p = 0.129681 p = 0.054321
0.6 13334046.4 12713258.9 13547898.6 p = 0.697596 p < 0.01 p = 0.064097 p < 0.01

Table 1: The mean AUC at indicated levels of feedback correctness, with p-values. TAMER refers to DQN-TAMER.

the effect of feedback over time by clamping the outputs of
the distribution to within the range [0.5− β, 0.5 + β] where
β(t) = 0.5∗αt and α is a hyperparameter from (0, 1) which
controls the rate of reduction. Like discrete Policy Shaping,
DPS combines the distribution over actions created by the
RL algorithm with the estimate of the optimality distribu-
tion by multiplying them together: π ∝ πR × πF .

We use OpenAI and Mujoco’s Reacher-v2 environment
(Brockman et al. 2016; Todorov, Erez, and Tassa 2012).
We discretize the actions to idle, center joint clockwise and
counter clockwise, and elbow joint clockwise and counter
clockwise. We use a sparse reward, giving the robot rewards
of 1 when it is within 0.015 of the goal and zero otherwise.
We compare to DQN-TAMER (Arakawa et al. 2018) and a
DQN. The oracle, a pretrained DQN, gives binary feedback:
positive to optimal actions and negative otherwise.

We compare the average performance of each algorithm
over 100 hyperparameter settings sampled randomly from
a distribution as in practice, HRL algorithms would likely
see little to no hyperparameter optimization due to the sig-
nificant cost of obtaining human feedback. We repeat over
varied correctness of feedback. We apply noise to all states
and actions uniformly. Each feedback is flipped with some
probability 1 − P , P ∈ [0.6, 0.75, 1.0], and the consistency
hyperparameter is set C = P . There are αh and αq hyper-
parameters for DQN-TAMER that control how the influence
of human feedback decays over the course of the learning
process. DQN-TAMER does not define αh(t) and αq(t) in
regards to feedback accuracy, so we do not adjust for P . Fu-
ture work will determine the best distribution for α and def-
inition of αh(t) and αq(t) for each P . However, this would
involve hyperparameter search over a much larger space.

Results and Conclusion
All results are shown in Table 1, with significance calcu-
lated using a one way ANOVA with post-hoc Tukey HSD
test. With P = 1, DPS significantly outperforms DQN-
TAMER by 11% in area under the learning curve (AUC).
Both DPS and DQN-TAMER outperform the DQN alone,
DPS significantly so by 16%. With the feedback correct-
ness reduced to P = 0.75, DPS insignificantly outperforms
both DQN-TAMER and the DQN. With P = 0.6, DQN-
TAMER performs significantly worse than the DQN by 6%,
and DPS has a non-significantly higher AUC than DQN-
TAMER. These results suggest that DPS matches or outper-
forms DQN-TAMER over many hyperparameter settings.
This result is useful when hyperparameters cannot be tuned.

Future work could include adding active learning to DPS,
which may reduce the total amount of feedback needed. In
addition, since in practice the true consistency of feedback

is unavailable, future work will test the performance of DPS
when theC parameter does not match P .In this work, we in-
troduce DPS and show that it outperforms or matches a DQN
and DQN-TAMER over various settings of feedback cor-
rectness when averaged over multiple hyperparameter set-
tings, which are difficult to tune prior to training.
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