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Abstract

Solving Multi-Agent Path Finding (MAPF) problems opti-
mally is known to be NP-Hard for both make-span and total
arrival time minimization. Many algorithms have been devel-
oped to solve MAPF problems optimally and they all have
different strengths and weaknesses. There is no dominating
MAPF algorithm that works well in all types of problems
and no standard guidelines for when to use which algorithm.
Therefore, there is a need for developing an automatic algo-
rithm selector that suggests the best optimal algorithm to use
given a MAPF problem instance. We propose a model based
on convolutions and inception modules by treating the input
MAPF instance as an image. We further show that techniques
such as single-agent shortest path annotation and graph em-
bedding are very effective for improving training quality. We
evaluate our model and show that it outperforms all individual
algorithms in its portfolio, as well as an existing state-of-the-
art MAPF algorithm selector.

Introduction
Multi-Agent Path Finding (MAPF) is the problem of find-
ing collision free paths for a team of agents traveling from
various start locations to goal locations on a map. Solv-
ing the MAPF problem optimally is known to be NP-Hard
for both make-span and total arrival time minimization (Yu
and LaValle 2013). Many types of optimal MAPF algo-
rithms and their variants have been proposed, such as Con-
flict Based Search (CBS) (Sharon et al. 2015), a method
based on branch-and-cut-and-price (BCP) (Lam et al. 2019),
and a boolean satisfiability based solver (SAT) (Surynek
et al. 2016). However, there is no dominating optimal al-
gorithm that performs well in all types of MAPF prob-
lem instances. For example, CBS performs well on maps
with narrow corridors, but slows significantly on maps with
open spaces (Sharon et al. 2015). It has been shown that
if a MAPF problem can be decomposed into multiple dis-
joint sub-problems, using proper algorithms for each sub-
problem will be faster than just using one algorithm (Svan-
cara and Bartak 2019). The difficulty of hand-picking the
best MAPF algorithm for a particular instance necessitates
the development of an algorithm selector which automati-
cally selects the best MAPF algorithm.
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Figure 1: (a). The CNN architecture of our model. Annotat-
ing the map image with (b) start and goal locations and (c)
single-agent shortest paths.

Automatic MAPF algorithm selectors have not been well
studied in the literature. Sigurdson et al. first proposed a
classification model based on a convolutional neural net-
work (CNN) (Sigurdson et al. 2019), but their neural net-
work design architecture was not refined for MAPF prob-
lems and has limited performance. Kaduri et al. proposed
another classification model based on a tree-based learning
algorithm (Kaduri, Boyarski, and Stern 2020); this work re-
quires hand-crafted MAPF features (e.g., number of agents,
obstacle density), which may impair performance should
some important features of an instance not be included.

In this paper, we propose a novel MAPF algorithm se-
lector based on a convolutional neural network (CNN) with
inception modules (Szegedy et al. 2015) that outperforms all
existing MAPF algorithm selectors. We propose two meth-
ods for improving the training quality: annotating the MAPF
instances with single-agent shortest path for each agent,
and using graph embedding techniques. We also introduce
a more selective and up-to-date algorithm portfolio that in-
cludes optimization, satisfiability, and search based algo-
rithms (namely BCP, SAT, CBS and CBS-H (Li et al. 2019)).
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Algorithm Accuracy Coverage Runtime
BCP 0.5294 0.91 2256
CBS 0.1888 0.41 7714
CBS-H 0.2810 0.90 2211
SAT 0.0008 0.38 8548
XGBoost Cl 0.6711 0.95 1694
G2V 0.7130 0.95 1548
MAPFAST 0.7689 0.97 1339
Oracle 1.0 1.0 917

Table 1: Simulation results

Model
In this work, we have modeled algorithm selection as a clas-
sification task using a CNN, and implemented it in Python
using the PyTorch package. Our model takes as input an im-
age representation of the MAPF instance and returns a pre-
diction of the fastest algorithm. Inception modules are used
to improve training speed and allow for a much deeper net-
work. The architecture of our CNN is three inception mod-
ules followed by a fully connected layer and three output
layers (Fig. 1a). Each inception module is followed by a
max-pool layer and a batch normalization layer. The input
for the CNN is a 320×320 map image annotated with op-
timal paths for each agent without considering other agents
(Fig. 1c). Based on our experiments, using maps annotated
with single-agent shortest paths rather than only start/goal
locations (Fig. 1b) significantly improves training quality.

Simulation Results
We used three metrics to evaluate our model. Accuracy gives
the proportion of instances that the fastest algorithm is cor-
rectly selected, or, for a single algorithm, the proportion of
instances it is the fastest algorithm. Coverage is the propor-
tion of the instances that an algorithm successfully solved.
Runtime is the overall time taken for the predicted algorithm,
in minutes, to solve all the problems in the test set. A default
value of 5 minutes was added to runtime when an algorithm
didn’t solve the instance within the 5 minute time limit.

Our algorithm portfolio has four algorithms: BCP, CBS,
CBS-H and SAT. This covers optimization-, search- and
satisfiability-based approaches. Table 1 shows the simula-
tion results from testing 2484 MAPF instances from the
benchmark set (Stern et al. 2019). The first four rows are
where a single algorithm is used on all the input instances. It
can be seen that BCP and CBS-H were successful in solving
90% of the input instances. However, even for the best indi-
vidual algorithm, BCP, the accuracy was only 53%, mean-
ing that it is the fastest algorithm for 53% of the instances.
Choosing only the BCP algorithm would take more than
twice as long as choosing the best performing algorithm for
each instance. This further justifies the claim that there is no
dominating optimal MAPF algorithm. The second part of
the table shows the comparison of a state-of-the-art MAPF
algorithm selector, XGBoost Cl (Kaduri, Boyarski, and Stern
2020), and our models. The Oracle row gives the analysis for
always using the fastest algorithm. Our CNN model, named

MAPFAST, successfully predicted the fastest algorithm for
77% of the input instances and had coverage of 97%, out-
performing XGBoost Cl, which had 67% accuracy and 95%
coverage. We also tried transforming the map image proper-
ties into vectors using a graph embedding framework called
Graph2Vec (Narayanan et al. 2017). Our model that used
graph embeddings, named G2V, had performance compara-
ble to MAPFAST, with 71% accuracy and 96% coverage,
also outperforming XGBoost Cl. Different from XGBoost
Cl and MAPFAST, G2V is trained only using the single-
agent shortest paths without knowing the topology of in-
stance map. G2V can also handle different map sizes with-
out re-training, which is more flexible than the CNN-based
approaches. The total runtime for the algorithms predicted
by our models are significantly less than using an individual
algorithm all the time. Our models also have a remarkable
improvement of accuracy compared to all of the individual
algorithm, which further justifies our design.
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