
Successive Halving Top-k Operator

Michał Pietruszka1,2, Łukasz Borchmann1,3, Filip Graliński1,4
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Abstract

We propose a differentiable successive halving method
of relaxing the top-k operator, rendering gradient-based
optimization possible. The need to perform softmax it-
eratively on the entire vector of scores is avoided by
using a tournament-style selection. As a result, a much
better approximation of top-k with lower computational
cost is achieved compared to the previous approach.

Problem Statement
Let n denote the number of d-dimensional vector represen-
tations, resulting in a matrix E ∈ Rn×d. A scalar vi is as-
signed to each representation Ei ∈ Rd. We want to select k
vectors out of n in E, so that the ones achieving the highest
scores in v will be passed to the next layer of a neural net-
work. The soft top-k operator Γ is defined for this task, such
that Γ : Rn×d × Rn → Rk×d is selecting k representations
which will form the input to the next neural network layer.
The operation has to be differentiable w.r.t. v.

Previous Approaches
The previously introduced solution, presented in Algo-
rithm 1 was based on an approximation of top-k selection
with iterative softmaxes (Goyal et al. 2018) and has a com-
plexity of O(n). In each of the k steps of the algorithm,
the weight distribution pi is calculated through a peaked-
softmax function on a modified vector of scores. The ob-
tained p values are then used to perform a linear combina-
tion of all representations in E, leading to an approximated
TopK(E) matrix. At the end of each step, the score which is
highest at the moment is overwritten by some large negative
number that guarantees future weights to be negligible.

Novel Successive Halving Top-k
Algorithm 2 presents the Successive Halving Top-K selec-
tion mechanism we propose. In short, we perform a tourna-
ment soft selection, where candidate vectors are compared
in pairs (i, j), until only k remained. After each round of the
tournament, a new E′ and v′ are composed as a linear com-
bination of these pairs with weights based on their respective
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Algorithm 1 Iterative Top-K Selection (Goyal et al. 2018)

1: procedure CONTINUOUSTOPK(E, v)
2: E′ ← 0k,d
3: for i← 1, k do
4: m← MAX(v)
5: a← ARGMAX(v)
6: pi ← PEAKEDSOFTMAX(−(v −m · 1)2)
7: E′i ← pi · E
8: va ← −10000 . Masking out max.
9: end for

10: return E′
11: end procedure
12:
13: procedure PEAKEDSOFTMAX(v)
14: v′ ← 0n,1
15: denom =

∑
j exp(vj)− exp(MAX(v))

16: for i← 1, n do
17: v′i ← exp(vi) · 1

denom
18: end for
19: return v′ . Probability distribution.
20: end procedure

scores. Each new vector is calculated as:

Ei · wi + Ej · wj ,

where the wi, wj is the result of a boosted softmax over
scores vi, vj . Analogously, the new-round’s scores are cal-
culated as:

vi · wi + vj · wj .

Weights are calculated using the BoostedSoftmax func-
tion, increasing the pairwise difference in scores between
vi and vj . Here, multiple functions can be used. For ex-
ample, softmax with base greater than e or, equivalently,
softmax(Cx,Cy) with constant C � 1.

One round halves the number of elements in E and v. We
perform it iteratively unless the size of E and v matches the
value of k, thus achieving O(log2(n/k)) time-complexity.

To improve the convergence towards selecting the real
top-k, it is desired to permute v and E first. In our Algo-
rithm 2, we sort vectors in E by their scores v and then
make pairs is such a way that the i-th highest-scoring vec-
tor will be paired with the (n− i+ )-th highest-scoring
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Algorithm 2 Successive Halving Top-K Selection

1: procedure TOPK(E, v)
2: for i← 1, log2(dn/ke) do
3: E, v ← SORT(E, v)
4: E, v ← TOURNAMENT(E, v)
5: end for
6: return E
7: end procedure
8:
9: procedure SORT(E, v)

10: E′ ← (E1, E2, ..), where vi ≥ vi+1 and vi ∈ v
11: v′ ← (v1, v2, ..), where vi ≥ vi+1 and vi ∈ v
12: return E′, v′
13: end procedure
14:
15: procedure TOURNAMENT(E, v)
16: n← 1

2‖v‖ . Target size
17: d← ‖E∗,1‖ . Representation depth
18: v′ ← 0n,1
19: E′ ← 0n,d
20: for i← 1, n do
21: w ← BOOSTEDSOFTMAX(vi, v2n−i+1)
22: E′i ← Ei · w0 + E2n−i+1 · w1

23: v′i ← vi · w0 + v2n−i+1 · w1

24: end for
25: return E′, v′
26: end procedure

vector, marked with the j-th index. Here, a simple non-
differentiable sorting operation suffices. Note that the selec-
tion of preferable permutation itself makes the process only
partially differentiable. In the case of modern CPUs, the cost
of sorting is practically negligible.

Evaluation
We assessed the performance of both algorithms exper-
imentally on randomly sampled matrices E such that
E ∼ U [−1, 1] and scores v ∼ U [0, 1]. The selected k top-
scoring vectors were compared to the real top-k selection us-
ing normalized Chamfer Cosine Similarity (nCCS) as given:

nCCS =
1

k

k∑
i=1

max
j∈[1,k]

(cos(yi, ŷj))

Additionally, we measured an average time for processing
a batch of size 16 on the NVIDIA A100 GPU, for n in range
24,5,..,14 and k in range 21,2,..,11.

We addressed the question of how both algorithms differ
in terms of speed (Figure 1) and quality (Figure 2), depend-
ing on k and n choices. One can notice that the higher the
choice of k, the faster our algorithm is, and the slower is the
iterative baseline of (Goyal et al. 2018) as predicted by their
complexities. Our solution’s qualitative robustness is proven
by achieving higher similarity to the real top-k for any given
k. The score degrades as the number of rounds in the tour-
nament increases, as each round introduces additional noise.
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Figure 1: Number of seconds required to process a batch of
sequences (Y -axis). Results depending on n (X-axis). The
lower the better.
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Figure 2: Approximation quality (Y -axis) in the nCCS met-
ric. The higher the better.

Summary
We proved that top-k could be relaxed using tournament-
style soft-selection, leading to a better computational com-
plexity and improved approximation quality than in the case
of a previous solution. Furthermore, the Successive Halving
Top-K we proposed performs robustly for large values of k
and n. The advance was achieved by limiting the number of
elements softmax is performed on, as well as by a reduction
in the number of steps required. We expect our algorithm
to perform better when employed as a neural network layer,
due to a shorter chain of backpropagation’s dependencies.
We are excited about the future of differentiable top-k based
selection and plan to apply them to downstream tasks.

The source code used in this paper is publicly available at
https://github.com/applicaai/successive-halving-topk.
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