Detection of Digital Manipulation in Facial Images (Student Abstract)
DOI:
https://doi.org/10.1609/aaai.v35i18.17919Keywords:
Deepfake Detection, Bias, Media Forensics, 3D ConvNets, Motion Magnification, Computer Vision, Face RecognitionAbstract
Advances in deep learning have enabled the creation of photo-realistic DeepFakes by switching the identity or expression of individuals. Such technology in the wrong hands can seed chaos through blackmail, extortion, and forging false statements of influential individuals. This work proposes a novel approach to detect forged videos by magnifying their temporal inconsistencies. A study is also conducted to understand role of ethnicity bias due to skewed datasets on deepfake detection. A new dataset comprising forged videos of Indian ethnicity individuals is presented to facilitate this study.Downloads
Published
2021-05-18
How to Cite
Mehra, A., Agarwal, A., Vatsa, M., & Singh, R. (2021). Detection of Digital Manipulation in Facial Images (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 35(18), 15845-15846. https://doi.org/10.1609/aaai.v35i18.17919
Issue
Section
AAAI Student Abstract and Poster Program