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Introduction
Humans possess the advanced ability to grab, hold, and ma-
nipulate objects with dexterous hands. What about robots?
Can they interact with the surrounding world intelligently
to achieve certain goals (e.g., grasping, object-relocation)?
Actually, robotic manipulation is central to achieving the
premise of robotics and represents immense potential to be
widely applied in various scenarios like industries, hospitals,
and homes. In this work, we aim to address multiple robotic
manipulation tasks like grasping, button-pushing, and door-
opening with reinforcement learning (RL), state representa-
tion learning (SRL), and imitation learning. For diverse mis-
sions, we self-built the PyBullet or MuJoCo simulated envi-
ronments (Fig. 1) and independently explored three differ-
ent learning-style methods to successfully solve such tasks:
(1) Normal reinforcement learning methods; (2) Combined
state representation learning (SRL) and RL approaches; (3)
Imitation learning bootstrapped RL algorithms.

Kuka Grasping with Reinforcement Learning
As represented in Fig. 1, we established two Kuka-grasping
PyBullet environments denoted as “KukaGymEnv-v0” and
“KukaDiverseObjectEnv-v0”. Fig. 2 also provides basic in-
formation of two scenarios. Different from “KukaGymEnv-
v0”, “KukaDiverseObjectEnv-v0” grasps objects from mul-
tiple items instead of one single within the table slot and
it considers high-level image data as input rather than rel-
ative x,y positions or Euler angles for robotic agents and
targets. While training two grasping environments, we both
utilized classical RL methods including Deep Q-Learning
(DQN) (Mnih et al. 2013) and Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017). But separately, we ap-
plied the wrapped PPO & DQN algorithms in OpenAI
baselines on the non-vision “KukaGymEnv-v0”. For visual-
based “KukaDiverseObjectEnv-v0”, we self-implemented
DQN & PPO RL algorithms with PyTorch and Tensorboard
(Fig. 3), then recorded the success percentage (SP) with
different evaluation episodes from 100 to 1000 and average
evaluation time in each episode. Briefly speaking, our im-
plemented DQN follows the training pipeline in Fig. 4 (a).
Its aim is training a policy that maximizes the discounted cu-
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Figure 1: Left: Whole-arm-based 1-2 finger gripper manip-
ulators. (Up: Grasping; Down: Button-pushing)
Right: Multi-fingered dexterous manipulators (four tasks).

mulative reward Rt0 =
∑∞

t=t0
γt−t0rt, where Rt0 denotes

the return. The discount γ ∈ [0, 1] ensures that the sum con-
verges. In sum, pure RL algorithms (e.g., PPO & DQN) can
effectively and efficiently solve basic grasping tasks.

Kuka Button-pushing with SRL & RL
Kuka Button-pushing PyBullet environments focus on goal-
based robotic tasks and we built two simulated scenarios
“KukaButtonGymEnv-v0” and “KukaRandomGymEnv-v0”
with S-RL Toolbox (Raffin et al. 2018). To tackle the mis-
sions, we utilized a “self-supervised learning” style method
which integrates state representation learning (SRL) with re-
inforcement learning (RL). SRL preliminarily extracts com-
pact representations into the state space S (e.g., learn tar-
get and agent positions (x,y)) from raw observation data O),
then we utilized the learned states st ∈ S with RL methods
to train a control policy π and output actions at to maxi-
mize rewards for specific tasks, thus addressing main chal-
lenges in RL: sample inefficiency and instability. To em-
phasize, efficiency is critical in robotics since experimenting
an action is time-consuming, even defining interesting states
for control tasks requires considerable manual engineering.
Hence, we explored multiple effective SRL techniques (e.g.,
Auto-Encoder, VAE, Robotic Priors, etc.) to learn a com-
pact, sufficient, disentangled, and generalizable state repre-
sentation and benefit the following RL training significantly.
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Figure 2: Basic information for two Button-pushing tasks.

Figure 3: Training Curves for “KukaDiverseObjectEnv-v0”
(Algorithm [Left]: Average Reward Score [Right])

State Representation Learning
We explored 8 different SRL techniques belonging to 5 cate-
gories in S-RL Toolbox, even saved loss training curves and
the learned state representation distribution visualizations1.
• Reconstruction-based methods: Auto-Encoder (AE) &

VAE (Variational AE) & DAE (Denoising AE).
• Forward & Inverse Model.
• Robotic Priors. (Raffin et al. 2018)
• Combining model with different loss functions.
• Splitting model that stacks representations learned with

different objectives (e.g. Reward+Inverse+AE, etc).

SRL & RL Training and Evaluation
Following the SRL & RL pipeline (Fig. 4 (b)) in S-RL
Toolbox, after SRL training we combined the saved SRL
model with various RL algorithms like DQN, PPO, and
SAC (Haarnoja et al. 2018) to solve “KukaButtonGymEnv-
v0” and “KukaRandomGymEnv-v0”. While training, SRL
model firstly transforms the input image observation into
states, then chooses actions with RL methods. Also, we re-
stricted training timesteps to be 50000, recorded the average
reward scores for two button-pushing tasks and compared
training performances of diverse SRL & RL approaches.

After training, we utilized two evaluation metrics for this
self-supervised method: (1) Correlation between ground-
truth states and learned representations, where we compute
GroundTruthCorrelation(GTC)mean as follows,

GTCmean = E[GTC(i)] = E[max
j
|ρs,s̃(i, j)|] (1)

= E[max
j
|E[(s− µs ∗ (s̃)− µs̃)]

σs ∗ σs̃
|] (2)

(2) Mean reward and evaluation time while evaluating two
self-built new Button-pushing environments with different
button scales for 30 epochs and recorded evaluation videos.

In a word, we find the SRL & RL pipeline performs well
on goal-based manipulation tasks, even SRL can certainly

1Link: https://pan.baidu.com/s/1exP6yvJVzd1zpYOCco g1Q
(password: rxvc) for Cambridge AI Report & Experiments Code.

Figure 4: Left: DQN train flow; Right: SRL & RL model.

Figure 5: Left: Evaluation Envs. Right: Visualization.

extract crucial prior knowledge to benefit the RL phase. Also
new SRL techniques can be explored on complex missions.

Multi-fingered Dexterous Hand Manipulators
Towards the multi-fingered manipulation tasks, we success-
fully implemented the “Imitation Learning” style DAPG
method (Rajeswaran et al. 2017) for object relocation, pen
rotation, tool usage, and door-opening, even recorded task
videos to observe directly. Using this approach, the agent be-
comes much flexible and efficient by imitating human hand
demonstrations. For future work, we can apply advanced 3D
computer vision techniques to facilitate the training process.
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