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Abstract
In this work, we consider distance-based clustering of par-
tial lexicographic preference trees (PLP-trees), intuitive and
compact graphical representations of user preferences over
multi-valued attributes. To compute distances between PLP-
trees, we propose a polynomial time algorithm that computes
Kendall’s τ distance directly from the trees and show its ef-
ficacy compared to the brute-force algorithm. To this end,
we implement several clustering methods (i.e., spectral clus-
tering, affinity propagation, and agglomerative nesting) aug-
mented by our distance algorithm, experiment with clustering
of up to 10,000 PLP-trees, and show the effectiveness of the
clustering methods and visualizations of their results.

Introduction
Understanding the decision patterns of users and modeling
their preferences is an important problem in artificial intel-
ligence and has received much attention in recent years. A
myriad of models for the task of preference representation
have been proposed, at the frontier of which are partial lex-
icographic preference trees (PLP-trees, for short) (Liu and
Truszczynski 2015), and conditional preference networks
(CP-nets). PLP-trees are particularly interesting, for they
succinctly encode a total preorder (i.e., a binary relation that
is total, reflexive, and transitive) of exponentially many alter-
natives into the structure of an often compact tree. CP-nets
also provide an intuitive encoding with the ceteris paribus
semantics, but they generally are computationally hard to
learn and reason about. For this reason we focus on PLP-
trees, which show great potential as effective and explain-
able models.

PLP-trees are useful for modeling individual preferences.
Meanwhile, being able to cluster and reason about collec-
tions of preferences is critical to various research areas,
such as recommender systems, marketing, and human- cen-
tric machine learning. Clustering a set of entities typically
relies on computing distances between them. Examples of
distance-based metrics are Euclidean distance, Spearman’s
ρ, and Kendall’s τ . Because PLP-trees induce total pre-
orders over alternatives, we focus on Kendall’s τ .

Clearly, one may use the straightforward brute-force al-
gorithm to compute τ ; however, due to the exponentiality
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of the space of alternatives, this direct method practically is
infeasible. Recently, Li and Kazimipour (Li and Kazimipour
2018) proposed a computationally efficient algorithm, called
LpDis, that utilizes the tree structures to compute τ in time
polynomial in the size of the two given trees.

However, their results are limited to complete models,
trees that require every attribute to be present in every
branch. On the contrary, PLP-trees allow for missing at-
tributes, thus encoding total preorders, as opposed to total
orders, and allow for more concise preference representa-
tions. To this end, we study the clustering problem of PLP-
trees. At the core of this problem, we investigate the problem
of computing the τ distance and propose a new polynomial
time algorithm PlpDis, an extension to the LpDis algorithm.
In the remainder of this paper, we provide necessary prelim-
inaries, define a variant of Kendall’s τ for PLP- trees and de-
scribe our PlpDis algorithm that accommodates partial trees,
and demonstrate PLP-tree clustering using PlpDis.

Preliminaries

Let V = {X1, ..., Xn} be a set of n categorical attributes
with each Xi ∈ V having a finite domain of values Di =
{xi1, . . . , ximi

}. The combinatorial domain CD(V) over V
is the Cartesian product D1 × . . . × Dn. We call elements
of CD(V) alternatives. A PLP-tree over V is an ordered la-
beled tree where every non-leaf node 1) is labeled with an at-
tribute Xi from V , 2) has a local preference >i (a total order
over Di), and 3) has |Di| outgoing edges ordered from left
to right according to >i. Additionally, each attribute from
V appears at most once in any branch of the tree. The leaf
nodes in the tree indicate buckets of alternatives.

We reason about the distance between PLP-trees by con-
sidering the disagreements between the orders they repre-
sent. Let T1 and T2 be two PLP-trees (two total preorders),
and α and β two distinct alternatives from CD(V). The or-
dering of α and β on T1 and T2 either strictly agree, strictly
disagree, or partially disagree. Strict agreement occurs when
in both T1 and T2 either α � β, β � α, or α ≈ β, where
� means strict preference and ≈ means equivalence. Strict
disagreement occurs when in T1 we have α � β and in T2

β � α, or vice versa. Partial disagreement occurs when in
T1 α ≈ β and in T2 α 6≈ β (α � β or β � α), or vice versa.
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Distance Between PLP-Trees
We see that the partiality of PLP-trees introduces partial dis-
agreements, which are not accounted for by Kendall’s τ or
LpDis. Thus, we first define a variant of Kendall’s τ called
partial Kendall’s τ , denoted τ ′. Let SDT1,T2 , and PDT1,T2

be the set of alternative pairs on which T1 and T2 strictly
disagree and partially disagree, respectively. τ ′ is then:

τ ′(T1, T2) = |SDT1,T2
|+ c ∗ |PDT1,T2

|, (1)
where c ∈ [0, 1] is an adjustable constant coefficient that
adjusts the weight of partial disagreements. For our algo-
rithm we set c = 0.5, however finding a true weight for par-
tial disagreements w.r.t strict disagreements is an interesting
problem for future work. As the computation of |SDT1,T2

| is
originated by Li and Kazimipour (Li and Kazimipour 2018),
we refer to their paper for it.

We now present the equation for computing |PDT1,T2
|,

the novel contribution in our PlpDis algorithm. To compute
|PDT1,T2

|, we extend the LpDis traversal algorithm down
to the leaves in both trees and compute the number of al-
ternative pairs encoded both at a leaf node in one tree and
at a non-leaf node in the other, denoted |Pn ∩ Pn′ |. Thus,
we have |PDT1,T2 | =

∑
n∈T1,n′∈T2

|Pn ∩ Pn′ |, where ex-
actly one of n and n′ is a leaf node. We consider the distinct
pairs of non-leaf and leaf nodes since they encode strict and
partial disagreements, respectively. For all distinct pairs of n
and n′ from both trees (w.l.o.g., n is a leaf), if the attribute
labeling n′, Vn′ , is not an ancestor of n and the branching
attributes in both trees are consistent, we have:

|Pn ∩ Pn′ | =
(
|DVn′ |

2

)
×

∏
X∈Ă\B̆

|DX | ×
∏

Y ∈V\(Ă∪{Vn′})

|DY |2 (2)

where Ă is the union of ancestor attributes for the nodes
and B̆ is the set of attributes in Ă that branch out explicitly.
The first term computes the number of distinct pairs of val-
ues in the domain of Vn′ and the other two terms adjust for
possible values of ancestor and descendant (including miss-
ing) attributes, respectively. Clearly, our algorithm PlpDis to
compute τ ′(T1, T2) runs in time polynomial in the size of T1

and T2. This follows from the fact that in the worst case, we
compare every pair of nodes between the two trees.

Clustering PLP-Trees
We begin clustering by first computing a pairwise distance
matrix for a collection of PLP-trees. Then we can use any
off-the-shelf clustering algorithm that takes the distance ma-
trix as input. For our experiments, we selected spectral
clustering, affinity propagation, and agglomerative nesting
(AGNES), the latter of which has three variants: average,
single, and complete linkage. To validate the clustering re-
sults, we used the Dunn Index (DI) and Davies- Bouldin
Index (DBI), which both measure the extent to which a
set of clusters minimize overall intra-cluster distances while
also maximizing inter-cluster distances. Specifically, since
higher is better for DI and lower is better for DBI , we use
a ratio ofDI/DBI . In addition to the quantitative measures,
we qualitatively assess cluster quality by constructing KNN-
graphs (withK = 10) from the distance matrix and coloring
vertices according to each algorithm’s cluster assignments.

Forest Size 1000 10,000
# Clusters 8 24
Spectral 0.387 DNF
Aff. Prop. 0.342 0.238
AGNES-A 2.172 1.323
AGNES-S 2.172 2.034
AGNES-C 2.245 0.886

(a) DI/DBI results (b) 1k trees clustered by AGNES-C

Figure 1: Selected clustering results and visualization

To test PlpDis-powered clustering, we applied the se-
lected algorithms to the task of clustering PLP-forests
learned from a Car Evaluation dataset1using Liu and
Truszczynski’s greedy algorithm (Liu and Truszczynski
2019). In the experiment, we learned forests of sizes 100,
500, 1,000, 2,500, 5,000, and 10,000 with each tree learn-
ing from 100 examples. Note that since affinity propagation
finds the number of clusters k itself, we run it first and pro-
vide the k it finds to the other algorithms.

The results of these tests for the forests of size 1,000 and
10,000 are included in Figure 1a, where the best score is
bolded in each column. Note that “DNF” in the table for
spectral clustering indicates that the algorithm did not finish
within a set timeout threshold of 20 minutes. In Figure 1b
we show the KNN-graph from the test with 1,000 trees for
complete-linkage AGNES, which performed the best in this
test. Overall, all three variants of AGNES outperform spec-
tral clustering and affinity propagation. AGNES consistently
detects the highly-connected (similar) vertices in the KNN-
graphs, but the other methods do not. This trend continues
for all tested forest sizes, with single-linkage taking the lead
for the larger forests with 2,500 or more trees.

Conclusion and Future Work
In this work, we proposed PlpDis algorithm to measure dis-
tance between PLP-trees, and integrated it with several exist-
ing clustering methods. Our experimental and visual results
show effectiveness of our algorithm. For future directions,
we plan to improve the scalability of our implementation for
clustering much larger numbers of models. We also intend
to explore other preferential datasets as well as interactive
cluster visualization techniques.
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