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Abstract

The solutions proposed in the literature for adversarial robust-
ness are either not effective against the challenging gradient-
based attacks or are computationally demanding, such as ad-
versarial training. Adversarial training or network training
based data augmentation shows the potential to increase the
adversarial robustness. While the training seems compelling,
it is not feasible for resource-constrained institutions, espe-
cially academia, to train the network from scratch multi-
ple times. The two fold contributions are: (i) providing an
effective solution against white-box adversarial attacks via
network fine-tuning steps and (ii) observing the role of dif-
ferent optimizers towards robustness. Extensive experiments
are performed on a range of databases, including Fashion-
MNIST and a subset of ImageNet. It is found that the few
steps of network fine-tuning effectively increases the robust-
ness of both shallow and deep architectures. To know other
interesting observations, especially regarding the role of the
optimizer, refer to the paper.

Introduction
Training of deep neural networks (DNNs) requires a large
number of computational resources and time; therefore,
modifying the architecture or training them from scratch
is not a feasible solution against adversarial perturbations
(Goswami et al. 2019; Agarwal et al. 2020; Singh et al.
2020). This research aims to provide a solution for adver-
sarial robustness without putting an extensive burden on
the resource-constrained institutions. A novel data augmen-
tation is performed by adding the random transformations
within the local patches of the images. The modification of
local patches is inspired by the findings, which show that
individual neurons are sensitive towards specific parts of an
image (Goodfellow, Shlens, and Szegedy 2015); addition-
ally, adversarial perturbations modifies the images at a local
level. Apart from that, the patch-based adversarial attacks
also show the importance of local regions in the decision of
the network (Yang et al. 2020). In brief, this research’s con-
tributions are: (i) a few-step network fine-tuning is proposed
by augmenting the training set of a database with the locally
modified images and (ii) comparison with complex defense
algorithms including adversarial training.
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Figure 1: Proposed CNN fine-tuning with a randomized
sampling-based data augmentation. λ is the random num-
ber U ∈ (1,K) uniformly generated to select the function
to apply on an image patch. q is the randomized function
selected from the pool of operations K based on λ. (x,y) in-
dicating the coordinates in the patch in an image.

⊙
is the

elementary operation between image patch and q. ⊕ is the
concatenation of original and modified input for fine-tuning.

Proposed Adversarial Robustness through
Fine-tuning

In this research, to provide the adversarial robustness, fine-
tuning is performed by inducing the randomness in the
data. Generally, the deep classifiers are trained using a large
amount of database and, therefore, share a strong depen-
dency between the distribution of the training images. But
when out of distribution data or digitally perturbed data
comes, the network fails to behave as expected. In this re-
search, we try to reduce this dependency between the in-
put and output of the system. To do so, the local patches
of an image are perturbed/modified using multiple functions
randomly selected. The function chosen depicts the possible
variation in the real-world testing images, including trans-
formations such as rotation, translation, and flipping, noise,
and occlusion via pixel masking.

As shown in Figure 1, patch(es) of size w × w is(are) se-
lected around the center of an image. A function selected
using the variable drawn from a uniform distribution is ap-
plied on the patch(es), and the modified image is combined
with its clean image for network fine-tuning.
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Attack Parameters Undefended Proposed Defended
Adam RMSProp

F-MNIST (Clean Accuracy = 91.49%)
FGSM ε = 0.3 11.41 87.51 85.73
IFGSM ε = 0.3, α = 0.01 09.85 88.21 84.38
PGD-10 ε = 0.3, α = 0.01 03.06 53.72 50.08

CIFAR-10 (Clean Accuracy = 83.91%)
FGSM ε = 0.03 17.49 43.69 65.93
IFGSM ε = 0.03, α = 0.01 14.70 39.21 72.68
PGD-10 ε = 0.03, α = 0.01 14.59 34.45 60.37

Imagenette (Clean Accuracy = 84.73%)
FGSM ε = 0.03 17.47 32.23 43.58
IFGSM ε = 0.03, α = 0.01 15.37 30.52 43.97
PGD-10 ε = 0.03, α = 0.01 14.60 29.76 41.92

Table 1: Performance (%) of undefended and multiple opti-
mizer fine-tuned CNNs under white-box attacks.

Experimental Setup
We have used three databases namely: Fashion MNIST
(F-MNIST) (Xiao, Rasul, and Vollgraf 2017), CIFAR-10
(Krizhevsky and Hinton 2009), and subset of Imagenet
namely Imagenette1. This research aims to provide the ro-
bustness against challenging gradient-based attacks: (i) fast
gradient sign method (FGSM) (Goodfellow, Shlens, and
Szegedy 2015), (ii) iterative FGSM, and (iii) projected gra-
dient descent (PGD) (Madry et al. 2018). The results of the
proposed defense are reported using VGG-16 model (Si-
monyan and Zisserman 2015) for object databases. For F-
MNIST, a custom CNN model of 3 conv layers, each fol-
lowed by ReLU, is used for recognition. VGG and custom
models are trained using an adaptive learning rate with an
initial value of 1e−4 and 1e−3, respectively. Whereas the
fine-tuning is performed using Adam and RMSProp opti-
mizer with a fixed learning rate of 1e−4 for VGG and 1e−3

for custom CNN. The VGG model is trained for 200 epochs
and took around 20 hours on a 1080ti GPU machine. In com-
parison, fine-tuning is performed for 20 minutes.

Experimental Results and Analysis
The results of the adversarial sensitivity and robustness of
each database are reported in Table 1. On each database,
proposed fine-tuning can increase the robustness of CNNs
against each attack. The custom model’s accuracy decreases
from 91.49% to 3.06% when an iterative PGD attack is ap-
plied. When the network is fine-tuned using the proposed
data augmentation scheme, accuracy improves significantly
to 53.72%. Similar robustness has been observed on the
CIFAR-10 and Imagenette database. The defended model
fine-tuned using different optimizers (RMSProp) from the
pre-trained model (Adam) shows higher robustness on the
challenging object recognition database. The fine-tuned
model is optimized with different hyper-parameters, such as
batch size and learning rate. The finding indicates that for
proposed fine-tuning, the exact parameters of the network
are not needed. The comparison of the proposed fine-tuning
has also been performed with adversarial training, and the

1https://github.com/fastai/imagenette

Attack FGSM AT IFGSM AT PGD AT Proposed
FGSM 39.96 43.67 36.30 65.93
IFGSM 35.08 44.64 34.63 72.68
PGD 32.12 34.31 37.93 60.37

Table 2: Comparison (%) of the proposed defense with ad-
versarial training (AT) using VGG on CIFAR-10 database.

results are reported in Table 2. The proposed fine-tuning
based robustness surpasses the computationally expensive
adversarial training with a significant margin on each attack.
The proposed defense not only improves the adversarial ro-
bustness but also either retains or increases the performance
on clean images, where the majority of the existing algo-
rithms fail. On the CIFAR-10 database, the performance of
VGG improves by 3%, whereas on the Imagenette database,
it increases by 0.2%.

Conclusion and Future Work
In this research, we present a cost-effective network fine-
tuning based defense for CNNs against multiple attacks. The
findings show that we do not always need complex resource
extensive algorithms for adversarial robustness. Rather, the
networks can be fine-tuned by increasing the intelligent ran-
domness without even knowing the hyper-parameters of the
pre-trained undefended network. In the future, the selection
of patches and transformations can be learned.
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