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Abstract

Two fundamental challenges in program synthesis, i.e. learn-
ing programs from specifications, are (1) program correct-
ness and (2) search efficiency. We claim logical constraints
can address both: (1) by expressing strong requirements on
solutions and (2) due to being effective at eliminating non-
solutions. When learning from examples, a hypothesis fail-
ing on an example means that (a class of) related programs
fail as well. We encode these classes into constraints, thereby
pruning away many a failing hypothesis. We are expanding
this method with failure explanation: identify failing sub-
programs the related programs of which can be eliminated as
well. In addition to reasoning about examples, programming
involves ensuring general properties are not violated. Inspired
by the synthesis of functional programs, we intend to encode
correctness properties as well as runtime complexity bounds
into constraints.

Introduction

The sub-field of program synthesis known as inductive logic
programming (ILP) (Muggleton 1991) uses logical methods
to learn logic programs from examples. ILP represents the
examples, background knowledge (BK), and hypotheses as
logic programs (sets of clauses, i.e. sets of logical rules). A
typical ILP problem is to find a program composed of BK,
that is, provided functions and predicates, such that this pro-
gram is correct on a set of positive and negative examples.
The fundamental challenge of ILP is to efficiently find a so-
lution in a huge hypothesis space.

After a brief overview of related systems, we summarize
our approach to facing this challenge. Subsequently, we dis-
cuss ongoing work on integrating failure explanation into
our framework. As future work we intend to use constraints
to go beyond example-based specifications. We look at re-
finement types as a way of encoding functional correctness
guarantees. Finally, we consider the potential of runtime
complexity bounds for eliminating intractable hypotheses.

Related Work

One approach to learning hypotheses is to learn them clause
by clause, one at a time. Systems using this strategy typi-
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cally use a set covering algorithm (Muggleton 1995; Srini-
vasan 2001; Ahlgren and Yuen 2013). By relying heavily on
having been provided good examples, these systems tend to
be quite efficient. This comes at the cost of learning overly
specific solutions and struggling to learn recursive programs
(Cropper, Dumancic, and Muggleton 2020).

Recently, encoding the ILP problem as a satisfiability
problem has become popular (Law, Russo, and Broda 2014;
Kaminski, Eiter, and Inoue 2018; Evans and Grefenstette
2018). Typically, it is possible for these systems to learn op-
timal and recursive programs. Their performance hinges on
the effectiveness of conflict-driven clause learning in mod-
ern SAT solvers. However, these systems tend to scale badly,
especially in terms of the size of the examples’ domain.

Learning from Failures

In this past year, myself and Andrew Cropper have worked
on introducing the learning from failures (LFF) approach to
ILP (Cropper and Morel 2020). In LFF, an ILP system em-
ploys three distinct stages: generate, test, and constrain. In
the generate stage, a logic program hypothesis is generated
such that no hypothesis constraint (which restrict the syn-
tactic form of hypotheses) is violated. In the test stage, the
hypothesis is tested against training examples. A hypothesis
fails when a negative example is entailed or when a positive
example is not. Programs related by subsumption to a failing
hypothesis provably fail as well. In the constrain stage, con-
straints are derived that eliminate these related hypotheses.
If a negative example is entailed, the constraints prune gen-
eralisations of the hypothesis. If a positive example is not
entailed, the constraints prune specialisations of the hypoth-
esis. The three stages follow each other iteratively in a loop
until a hypothesis is found entailing all positive examples
and no negative example.

One way of understanding LFF is by seeing the learn-
ing of constraints as externalizing the way that clauses are
learned from conflicts inside SAT solvers. We detect con-
flicts by testing hypotheses. My implementation of the Pop-
per system embodies this idea. Popper maintains an answer
set programming (ASP) formula whose models correspond
to Prolog programs. In the first stage, a model is obtained
and converted to a program. The program is tested on all
positive and negative examples using Prolog. When a hy-
pothesis fails, Popper adds hypothesis constraints to its ASP



formula, thereby narrowing down the space of hypotheses.
Popper’s scalability is in large part due to our ASP formula
being ignorant of the examples’ domain.

Popper supports infinite domains, arbitrary data struc-
tures, learning textually minimal programs, and learning re-
cursive programs. The ILASP systems (Law, Russo, and
Broda 2020) have a similar generate-test-and-constrain loop,
though more tightly integrated. ILASP3’s notion of cov-
erage constraints is similar to our hypothesis constraints.
However, whereas ILASP3 requires the entire space of
clauses to be pre-computed to derive these constraints Pop-
per does so from singular programs.

Experiments with number theory, robot strategies, and list
transformation problems show that constraints can drasti-
cally improve learning performance, and that state-of-the-art
ILP systems such as ILASP and Metagol (Cropper, Morel,
and Muggleton 2019) are outperformed by Popper.

Explaining Failures

Central to the scientific method is experimentally testing hy-
potheses. A failing hypothesis prompts scientists to rule out
extensions of it. Moreover, a scientist will try to explain the
failure in order to eliminate even more hypotheses. In a pa-
per to be submitted in the upcoming months, we introduce
failure explanation techniques for program synthesis. Given
a logic program hypothesis, we test it on examples. When
a hypothesis fails, we identify clauses and literals respon-
sible for the failure. The identified sub-programs allow us
to eliminate more hypotheses that also provably fail. I have
developed an automatic failure explanation algorithm based
on analysing SLD-trees. Unlike the ILASP and ProSynth
(Raghothaman et al. 2020) systems, my Popperx system can
identify responsible literals within clauses.

I will show that identifying sub-programs is effective in
eliminating more hypotheses. I experimentally evaluate the
introduction of failure explanation to the Popper ILP system.
My results indicate that explaining failures can drastically
reduce the size of the hypothesis space as well as learning
times.

Future Work

Examples, e.g. in the form of test cases, are not the sole
guide towards correct programs. Often programmers en-
sure that a program under construction does not violate im-
portant properties. In the future I want to encode refine-
ment types (Polikarpova, Kuraj, and Solar-Lezama 2016;
Feng et al. 2018) as constraints. These types serve as (over-
approximating) correctness properties of predicates, e.g. that
the input and output of reverse have the same length. Func-
tional program synthesis by Frankle et al. (2016) stands out
in supporting both refinement types as well as examples,
casting the latter into the framework of the former. My en-
visioned approach is vastly simpler, as these properties, ex-
pressed as atoms in a background theory, can be directly in-
tegrated with our hypothesis constraints.

Knoth et al. (2019) use a strategy similar to that of Frankle
et al. for incorporating resource bound specifications into a
type-based synthesis system. A runtime complexity bound

15727

might say that a solution for reverse should take at most lin-
ear time with respect to its input argument. The above pro-
posed approach should apply here as well: the relevant back-
ground atoms, representing resource bounds, can be enabled
and disabled based on the hypothesis the solver is currently
building up.

The hope is that the refinement type project should take no
more than half a year. With most of the machinery in place,
the runtime complexity bounds project should take less than
half a year. In all, I anticipate showing that straightforward,
primarily declarative algorithms can solve synthesis prob-
lems too difficult for the state-of-the-art, in ILP and beyond.
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