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Abstract

We develop a data-driven approach for hand strength evalu-
ation in the game of Gin Rummy. Employing Convolutional
Neural Networks, Monte Carlo simulation, and Bayesian rea-
soning, we compute both offensive and defensive scores of
a game state. After only one training cycle, the model was
able to make sophisticated and human-like decisions with a
55.4%±0.8% win rate (90% confidence level) against a Sim-
ple player.

Introduction
Although Gin Rummy was one of the most popular card
games of the 1930’s and 1940’s (Parlett 2008, 2020)
and remains one of the most popular standard-deck card
games (Ranker Community 2020; BoardGameGeek.com
2020), it has received relatively little Artificial Intelligence
(AI) research attention. Here, we develop initial steps to-
wards hand strength evaluation in the game of Gin Rummy.

Gin Rummy is a 2-player imperfect information card
games played with a standard (a.k.a. French) 52-card deck.
Ranks run from aces low to kings high. The game’s object
is to be the first player to score 100 or more points accu-
mulated through the scoring of individual rounds. We fol-
low standard Gin Rummy rules (McLeod 2020) with North
American 25-point bonuses for both gin and undercut.

A meld is either at least 3 cards of a rank or at least 3
cards of a suit with consecutive ranks. Cards not in melds
are deadwood. Cards have associated point values with aces
being 1 point, face cards being 10 points, and other number
cards having points according to their number. Deadwood
points are the sum of card points from all deadwood cards.

At the beginning of each round, each player is dealt a
hand of 10 cards, and one card is dealt face-up to start the
discard pile. The rest of the cards form a face-down draw
pile. On each player’s turn, the player takes two actions: (1)
pick up a card (from either the face-up discard pile or the
face-down draw pile) and (2) discard a card to the face-up
discard pile. A player with total deadwood points less than
or equal to 10 may also knock to end the round. Referring
the game detailed rules (McLeod 2020), the player with less
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deadwood generally scores according to the deadwood dif-
ference.

Players need to make a series of non-trivial choices in Gin
Rummy. This paper focuses on two play strategies that we
call “offensive” and “defensive”. Discarding offensively, the
player focuses on developing their hand while potentially
helping their opponent complete a meld. Discarding defen-
sively, the player focuses on discarding cards that are un-
likely to be used by their opponent at the cost of not improv-
ing their hand. An expert player often alternates between
these strategies (Shankar 2015). Determining when to play
which strategy requires metrics to assert the goodness of a
hand (offensive score) and the safeness of each discardable
card (defensive score).

Other than some typical suggestions to build a good hand
(e.g. low deadwood points, high melds), developing patterns
is an empirical rule for constructing an offensive hand. For
example, the player should try to form a triangle of three
cards (e.g. 4♥− 5♥− 5♠) as this pattern becomes a meld if
the player can draw a 3♥, 6♥, 5♦, or 5♣. Other patterns,
such as a square of four cards, i.e. two pairs in adjacent
ranks, also have advantages (Kotsckowski 2020; Rubl.com
2020; Shankar 2015). Looking for all possible patterns is a
daunting task, as there might be many good patterns to fol-
low and bad ones to avoid. Playing offensively by balancing
between reducing deadwood, increasing melds, and assem-
bling patterns under time pressure is even more challenging.
Since we do not know any system for quantitatively com-
puting offensive scores, building a model to accomplish the
above task is our first goal.

The existing defensive score system relies on the basic
counting principle. For example, without any other informa-
tion, since a 10 (denoted “T”) can be used in six different
ways by the opponent to form a meld of three cards (e.g.
89T, 9TJ, TJQ, and 3×TTT), it has a discard risk score of
6. Similarly, a K has a discard risk score of 4. Thus, without
other information, it is safer to discard a K than to discard a
T. The discard risk score can evolve as the game progresses.
For example, if the player knows that the opponent does not
have any 9 or J, their T’s discard risk score is only 3. Hence,
it is now relatively safer to discard the T than the K. This ex-
isting defensive scoring system gives an upper bound to the
discard risk score of a card since it only considers the worst
cases given the available information. Refining this scoring
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system is our second goal. Beyond an upper bound, we aim
to improve the estimation of each cards’ discard risk score
to help defensive players make a more informed decision.

With the two aforementioned goals, we present a data-
driven approach for hand evaluation. We show that a Con-
volutional Neural Network (CNN) and a Monte Carlo (MC)
simulation can be used to estimate the offensive score of a
hand and that Bayesian reasoning can be used to estimate
the discard risk score of each discardable card. With only a
single training cycle, our player achieves 55.4%±0.8% with
a 90% confidence level (CL) winning rate against a Simple
player (SP), the baseline of our research provided by (Neller
2020). The SP implements a simple strategy:
• Ignore opponent actions and cards that are not in play.
• Only draw a face-up to complete or improve a meld. Oth-

erwise, draw face-down.
• Discard a highest-deadwood unmelded card, breaking ties

randomly and without regard to breaking up potential
meld patterns (e.g. pairs).

• Knock as soon as possible.
Our data-driven approach helps the player make sophis-
ticated and human-like decisions to improve play perfor-
mance against a SP for baseline comparison.

Related Work
As previously mentioned, there is little prior AI research
on the game of Gin Rummy in particular. TD-Rummy
and EVO-Rummy (Kotnik and Jugal Kalita 2003) perform
reinforcement learning using an artificial neural network
(ANN). That study seeks to compare traditional temporal-
difference learning to an evolutionary learning of ANN
weights, and thus primarily serves as a comparison of two
learning methods. It does not fully implement the rules of
Gin Rummy, e.g. there is no laying off of cards. The only
baseline for comparison is a player with a randomly initial-
ized ANN, so it is unclear how the players would perform
against a baseline SP with a reasonable strategy.

More relevant is the literature on Poker AI. Like Gin
Rummy, Poker is a stochastic, imperfect information card
game, albeit with a significantly smaller number of infor-
mation sets. DeepStack (Moravčı́k et al. 2017) and Libra-
tus (Brown and Sandholm 2018) effectively solved Heads-
up, no-limit Texas Hold ’Em Poker, but each require consid-
erable computational resources for fewer information sets.
For this study, we confine ourselves to techniques that re-
quire only commonly accessible computational resources,
and we focus on the learning of deterministic models to in-
form better Gin Rummy play decisions.

Scoring Metrics
Offensive Score
We formulate computing offensive score of a hand as finding
a mapping function f such that:

f : (x, o) 7→ y (1)

Variable x ∈ Z1×4×13
2 is binary matrix hand representation

(see Figure 1 for an example) of the primary player (denoted

A 2 3 4 5 6 7 8 9 T J Q K

♠ 0 0 0 0 1 0 0 0 0 0 0 1 0

♥ 0 0 1 0 0 1 0 0 0 0 0 1 0

♦ 0 0 0 0 0 1 1 0 0 0 0 0 0

♣ 1 0 1 0 0 0 0 0 0 0 1 0 0

Figure 1: [ 5♠, Q♠, 3♥, 6♥, Q♥, 6♦, 7♦, J♣, A♣, 3♣] 2-
dimensional binary hand representation, in which each row
is a suit and each column is a rank. 1 = having a card.

“player”). Variable o ∈ R1×4×13 is opponent hand estima-
tion, which will be explained in more details in Defensive
Score section. Variable y ∈ R represents the goodness of a
hand. At the end of each round (through which both players’
hands change), the winner scores s. For a game of r rounds
with index counting down from r − 1 to 0, for a hand at
round q with a discount factor γ:

y =

{
s× γq if player wins
−s× γq if player loses

(2)

Having γ = 1 implies no discount. The score of the last
hand is never discounted as its index q always equals 0.

We employ neural network ŷ = f̂ to approximate y = f :

y = ŷ + ε, ε ∼ N (0, σ2) (3)

where ε is Gaussian error. Since f̂ is a parametric function,
finding f̂ is equivalent to finding a set of weights that min-
imizes a given loss (e.g. mean square error). From this per-
spective, fitting a model through a dataset is summarizing
information from that data into a set of parameters. Hence,
the model trained from data collected from a player can only
be as good as that player. For a model to yield superior play
performance against a SP, we would want to train that model
on a dataset that features play superior to that of the SP. One
way to approach this is to explore possible lines of play with
MC simulation.

We explore the state space to find superior lines of play to
that of the SP by using MC simulation on a game in which a
Random player (RP) plays against a SP. Occasionally, the
RP finds a good sequence of decisions that beats the SP,
which cumulatively contributes to a superior policy. We use
CNN to summarize this superior policy from the dataset to
form the generation 1 player. More details about our meth-
ods are in the Experimentation section.

Variables x and o are raw data of a game state, challeng-
ing the model to compress. Transforming x and o to extract
essential features can support the learning process. We clas-
sify these hand features into two categories: macro-features
and micro-features.

Hand Macro-features Hand macro-features vector m in
this study includes deadwood points, number of sets, num-
ber of runs, and hit count. The hit count is the number of
cards that, if drawn, will either complete or extend any meld.
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Generally speaking, having many runs and sets is an advan-
tage since it reduces deadwood points. Similarly, it is a dis-
advantage to have many deadwood points since it prevents
knocking and allows the opponent to score more points.
However, when the player needs to make a discard decision,
removing the highest unmelded card is not always optimal,
especially when it has an excellent chance to become a meld
or when the opponent needs it. For an expert player, the
number of deadwood points may vary non-monotonically
across a hand (Kotsckowski 2020; Rubl.com 2020; Shankar
2015).

The hit count should be used with caution. Hit count of-
ten increases when patterns are assembled and decreases
as patterns are converted into melds. While optimizing pat-
terns can guide an offensive player, optimizing the hit count
can mislead the decision-making process. For example, if a
player tries to maximize the hit count, they mistakenly pre-
fer a triangle (hit count = 4) over a meld (hit count = 1 or
2). Conversely, if the player tries to minimize hit count, they
mistakenly prefer three separated cards (hit count = 0) over
a triangle (hit count = 4). Thus, the hit count in isolation
cannot inform a good strategy.

Hand Micro-features A hand with many good patterns
often has high offensive potential. For example, a pair (e.g.
5♥− 6♥) is better than two separated cards (e.g. 5♥− 6♠)
because the likelihood of becoming a meld of 5♥ and 6♥ is
much higher than that of 5♥ and 6♠. More abstractly, a hand
with cards that strongly interact with their neighbors often
has higher offensive potential. Both patterns and neighbor-
hood interaction are considered to be hand micro-features in
this study.

One method to extract hand micro-features is transform-
ing binary vector hand representation x ∈ Z52

2 (obtained by
flattening respective matrix representation) to selective in-
teraction terms i that represent the interaction of cards with
their neighbor. For example, since four neighbors of A♥ are
A♣, A♦, A♠, and 2♥, interaction of A♥ with its neighbors
is represented by A♥ × A♣, A♥ × A♦, A♥ × A♠, and
A♥× 2♥ interaction terms.

Another method to extract hand micro-features is apply-
ing 2D convolution on binary matrix hand representation. If
only 2× 1 and a 1× 2 filters with restricted kernels are used
in convolution phrase, this is equivalent to the first approach
using interaction terms.

2D convolution is a more general approach to extract
hand micro-features than using interaction terms. However,
it is more computationally expensive and requires a careful
and complicated design process. In this study, we perform a
comparative study of both.

Defensive Score
We can estimate the likelihood of the opponent holding a
particular card given sufficient history of their play. For ex-
ample, if the opponent picks up a face-up K♣, they are likely
to have its neighbor (such as Q♣, J♣, or other K’s). This ob-
servation can disincentivize the decision to discard a card
neighboring K♣ even if it has a high rank. More generally,
denoting A as the belief that the opponent holds card A and

denoting B as the observation of the opponent’s draw or dis-
card of a particular card, using Bayes’ theorem, we have:

P (A|B) = P (B|A)P (A)/P (B)

∝ P (B|A)P (A) = L(A|B)
(4)

where P (A|B) and L(A|B) are the conditional probability
and relative likelihood, respectively, of the opponent having
card A given opponent behavior B. At the beginning of a
game, as the player does not have any information of op-
ponent’s hand, P (A) is uniformly distributed and has the
value of 10/42. As the game progresses, P (A) is updated
by P (B|A), which can be estimated from historical data.
For a given hand x with an opponent hand estimation o, the
discard risk score of a card a ∈ x, s(a), is defined as the
sum of the joint relative likelihood of an opponent having
card pairs that can form or extend a meld with a:

s(a) =
∑

i∈N (a)

L(bi)× L(ci) (5)

where bi, ci ∈ o and N (a) is the index set of all card pairs
that can form or extend a meld with card a.

Experimentation
The Data
We conduct our experiments on three datasets described in
this section. Data is collected at the end of each round. Vari-
ables in each dataset are player hand, the opponent hand es-
timation, and the player’s discounted score defined in equa-
tion 2. If game states are identical but score differently, the
expected score is the average of all scores. Score distribu-
tions are in Figure 2. Due to Gin Rummy’s high variance
outcome, we use data from the hand’s last play for training
and validating by default.

The Simple dataset (1.6M observations) was collected
from games between two SPs from (Neller 2020). Since
pattern-building is not a trait of the SP, there are few patterns
in the Simple dataset for the model to extract. Therefore, we
explore the solution space to gather more potential meld pat-
tern by using MC simulation with a RP. The only difference
between the RP and the SP is that the RP randomly discards
an unmelded card. We are aware that training the model on
datasets from a RP is not ideal, but we did not have access to
any other play strategy other than the SP. Using a RP is in-
spired by natural evolution, where random mutations play an
important role. Similarly, by modifying SP to RP, we hope
to diversify our player strategy, accumulate good moves over
time, and transfer those good play strategies to our model.

We collect games between the RP and the SP to generate
Random-16 and Random-256 datasets. We sample the dis-
card actions in solution space 16 and 256 times for each ini-
tial pair of hands for the Random-16 (1.00M observations)
and Random-256 (1.01M observations) datasets. We simu-
late the game until completion because Gin Rummy involves
a chain of decisions with delayed rewards. Since we hypoth-
esize that a higher hand score is a signal of the better pattern,
only the best-scoring sample among 16 or 256 samples for
each initial pair of hands is recorded in the dataset.

15649



Figure 2: Scores in all datasets are approximately normally
distributed. As the sample frequency increases, the mean in-
creases, the standard deviation decreases, and the distribu-
tion skews upward.

Offensive Score
Our CNN’ architecture is in Figure 3a. We apply 2D convo-
lution to both player hand data and opponent hand estima-
tion. Each convolution layer consists of four filters for each
of three square sizes (2 × 2, 3 × 3, and 4 × 4) over adja-
cent ranks and suits in a binary matrix hand representation
with no padding followed by a rectified linear unit (ReLU).
We use multiple filter sizes simultaneously to minimize the
total number of parameters without sacrificing model per-
formance. For example, since the 2 × 2 filter can capture
a pair of cards in consecutive ranks, larger filter size is not
necessary for that purpose. Since this approach was inspired
by Inception v1 (Szegedy et al. 2015) and since our model
has dual inputs, we name our network Dual Inception. To
show the positive impact of using 2D convolution in pattern
recognition, we compare the performance of Dual Inception
with a Multi-Layer Perceptron (MLP) (Figure 3b) and MLP
with interaction terms (MLP-i) (Figure 3c).

We implemented all neural networks using the Python
Tensorflow Keras 2.3.0 library with a batch size of 64.
The training-validation ratio was 80:20. The initial learn-
ing rate was 10−3 and was scheduled to decay by a
factor of 0.1 every 32 epochs. All models were trained
over 96 epochs. Other training parameters were set as
default. More implementation details can be found at
https://github.com/sangttruong/ginrummy. The trained net-
work, f̂ , was used solely to decide which card to discard.
Specifically, among 11 cards, we discard the one that leaves
a hand with the highest offensive score. We present a de-
tailed result of this experience in Table 1.

Defensive Score
We record history of 10000 games between 2 SPs to estimate
relative likelihood L(B|A) in equation 4 by classifying 52
cards into buckets based on their 6 properties:

• Rank of the opponent hand card considered, the discarded
card, and the face-up card (three properties).

• Whether or not the card is held when the player discards
a card that is suited, i.e. sharing the same suit, with the
currently face-up card.

x

Convolution
4× 2× 2

Activation
ReLU

Flatten

Convolution
4× 3× 3

Activation
ReLU

Flatten

Convolution
4× 4× 4

Activation
ReLU

Flatten

m

Concatenate

Activation
ReLU

Linear Unit

y

o

Convolution
4× 2× 2

Activation
ReLU

Flatten

Convolution
4× 3× 3

Activation
ReLU

Flatten

Convolution
4× 4× 4

Activation
ReLU

Flatten

548

16

1

(a) Dual Inception
x

Flatten

m

Concatenate

Activation
ReLU

Linear Unit

y

o

Flatten

182

16

1

(b) MLP

x

i

m

Concatenate

Activation
ReLU

Linear Unit

y

o

Flatten

182

16

1

(c) MLP-i

Figure 3: Architecture of (a) Dual Inception, (b) MLP, and
(c) MLP-i. x, o, and y are the player’s hand, the opponent
hand estimation, and the player’s score, respectively. m is
the macro-features vector generated from x, and i is the
micro-features interaction term vector. Dual Inception, MLP,
and MLP-i have 9057, 1761, and 2945 total parameters, re-
spectively, all of which are trainable.

• Whether or not the card is not suited with either the cur-
rent face-up card or discarded card, suited with the face-
up card, or suited with the discarded card.

• Whether or not the card is held when the player draws
face-up.

For each bucket, recorded instances are averaged and trans-
formed according to the following Inverse Square Root Unit
function to form relative likelihoods of holding a given card:

g(o) =
o√

α+ o2
(6)

This transformation is chosen both to bound relative likeli-
hoods between 0 and 1 and to allow adjustment of the con-
vergence rate via hyperparameter α. We select α = 1 for
this study as it leaves the initial uniformly distributed rela-
tive likelihood (10/42) little-changed.
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(a) (b) (c)

Figure 4: Training loss (solid line) and validation loss (dashed line) of MLP, MLP-i, and Dual Inception on Simple (a), Random-
16 (b), and Random-256 (c) dataset. The vertical dashed line at 32 epochs and 64 epochs indicated a decay learning rate from
10−3 to 10−4 and 10−5, respectively. Since MLP does not have micro-feature extraction, it often gives the worst performance.
MLP-i uses a naive method for pattern recognition, hence it has worse performance than Dual Inception.

(a) Normalized residual distribution (b) Normalized residual plot (c) Quantile-quantile plot

Figure 5: Residual (y − ŷ) diagnostic for performance of Dual Inception on Random-256 dataset. Residual distribution is
approximately Gaussian, which agrees with the assumption of ε on equation 3.

Results and Discussion
Our results are summarized in Table 1 and Figure 4. All
models converged after the 96 epochs without symptoms of
overfitting. A low MSE often correlates with a high winning
rate. On average, each game lasts 500 ms (1 core, no GPU
accelerator). Obtaining a computationally inexpensive hand
evaluation is an important criterion for our research.

MLP and MLP-i have insignificant differences in perfor-
mance among all datasets, indicating that interaction terms
did not effectively extract hand micro-features. The supe-
rior performance of Dual Inception indicates that 2D con-
volution better extracts micro-features. Variants of Dual In-
ception with architectures that are deeper, wider, and having
more filters were experimented with, but none showed sig-
nificant improvement. Going from the Simple dataset to the
Random-16 and Random-256 datasets, all models’ winning
rate increases, indicating that the abundant amount of infor-
mation from exploring a more diverse sample of the state
space helps models learn a better policy.

We conduct residual diagnostics on Dual Inception
trained on the Random-256 dataset in seeking model defects
(Figure 5). Kernel density estimation (KDE) using Scott’s
rule for bandwidth selection of the normalized residual ap-
proximates a Gaussian curve, indicating that the residual
distribution is relatively normal as assumed in equation 3.
The residual and quantile-quantile plots show that the model
tends to over-predict a low score, which can be explained

by gin or undercut bonuses. Since we never explicitly intro-
duced these two concepts to the model, the model predic-
tion in these cases is far from expected performance. Over-
all, residual diagnostics shows that Dual Inception is a good
approximator f̂ as defined in equation 3.

In addition to the above datasets, we trained all models on
all stages of the Simple dataset, hoping that they can learn
additional behaviors under limited information (Table 1b).
As earlier in the game, the data is noisier, presenting a signif-
icant learning challenge. All all-stage model performances
are worse than their performance on the last-stage dataset.
On all stages of the Simple dataset and among tested mod-
els, we observe that the simple model achieves better per-
formance, which can be explained by the fact that a simple
model generalizes better when there is limited information.

Since artificial suit order in matrix hand representation
seems to be unnecessary for the learning process, we intro-
duced data augmentation to remove this effect (Table 1c):
for every matrix hand representation given to a model, we
also gave the model 4! = 24 row-permutations of the input.
Augmentation introduces obstacles to the learning process
since it increases the input size 242 times. Increasing the
number of filters in each convolution layer from 4 to 16 was
necessary to have a comparable performance with the model
trained on un-augmented datasets.

We examined players’ behavior to understand better the
policy learned from different datasets (Figure 6). The SP
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A 2 3 4 5 6 7 8 9 T J Q K

♣ 0 0 1 0 0 1 0 0 0 0 0 1 0

♥ 0 0 0 0 0 1 1 0 0 0 0 0 0

♠ 1 0 0 0 1 0 0 0 0 0 0 0 0

♦ 0 0 0 0 0 0 1 0 0 1 1 0 0

A 2 3 4 5 6 7 8 9 T J Q K

♣ 0 0 1 0 0 1 0 0 0 0 0 1 0

♥ 0 0 0 0 0 1 1 0 0 1 0 0 0

♠ 1 0 0 0 1 0 0 0 0 0 0 0 0

♦ 0 0 0 0 0 0 1 0 0 1 1 0 0

A 2 3 4 5 6 7 8 9 T J Q K

♣ 0 0 1 0 0 1 0 0 0 0 0 0 0

♥ 0 0 0 0 0 1 1 0 0 1 0 0 0

♠ 1 0 0 0 1 0 0 0 0 0 0 0 0

♦ 0 0 0 0 0 0 1 0 0 1 1 0 0

Dual Inception with Random-16 dataset

Dual Inception with Random-256 dataset

A 2 3 4 5 6 7 8 9 T J Q K

♣ 0 0 1 0 0 1 0 0 0 0 0 1 0

♥ 0 0 0 0 0 1 1 0 0 1 0 0 0

♠ 1 0 0 0 1 0 0 0 0 0 0 0 0

♦ 0 0 0 0 0 0 1 0 0 0 1 0 0

Dual Inception with Simple dataset

SP

A 2 3 4 5 6 7 8 9 T J Q K

♣ 0 0 0 0 0 1 0 0 0 0 0 1 0

♥ 0 0 0 0 0 1 1 0 0 1 0 0 0

♠ 1 0 0 0 1 0 0 0 0 0 0 0 0

♦ 0 0 0 0 0 0 1 0 0 1 1 0 0

Dual Inception with all stages of Simple dataset

+T♥

−Q♣ −T♦ −3♣

Figure 6: Behavior of SP and Dual Inception on Random-16, Random-256, Simple (all-stage and last-stage) datasets. Cyan
(bold) cards form a cluster (double triangle), pink (non-bold, non-italic) cards form other clusters (which was a pair, then
becomes a triangle after T♥ is drawn), and violet (italic) cards are isolated.

randomly discards one of the highest-rank unmelded cards
(either T♥,T♦, J♦ or Q♣). Since 3/4 of these cards are in
a triangle, it is likely that the SP will break this pattern, and
indeed it did. Dual Inception trained on the last-stage Sim-
ple dataset has the same behavior. Dual Inception trained on
all-stages Simple dataset also tries to preserve the patterns
in hand by keeping the triangles, but it fails to discard the
highest unmelded card that is not in any pattern: it discards
a 3♣. At the first stage of the game, this is considered to
be a poor decision. Both Dual Inception on Random-16 and
Random-256 discarded the highest unmelded card that is not
in a pattern (Q♣), reducing deadwood points and preserving
patterns at the same time. At the very first stage of the game,
this is considered to be a great decision.

Although Dual Inception is a suitable approximator as in-
dicated by MSE and residual diagnostics, its performance is
rather modest: it only wins 55.4 ± 0.8% (90% CL) against
the SP. To understand why a good estimator does not nec-
essarily have greater performance, we examine the hand
of Dual Inception player on Random-16 dataset at the last
round, where information about the opponent is most abun-
dant (Figure 7). Based on opponent hand estimation, we can
compute the defensive score of each unmelded card using
equation 5 (Figure 7). Dual Inception decides that discard-
ing 9♥ is the best offensive decision. However, the model
does not realize that discarding 9♥ is also highly risky, based
on the discard risk score. It is also unlikely that 9♥ can be
laid off except when the opponent has 7♥ and 8♥. As the
player cannot simultaneously optimize two criteria (i.e. de-
fensive and offensive), it discards 9♥, allowing the opponent

to complete another meld and win the game with 30 points.
Note that the model is aware of its disadvantaged game
states as all predicted offensive scores are near −30. Dis-
cards based solely on discard risk score do not yield a supe-
rior player to the SP. Discarding is a multi-criteria decision,
and it is up to the player to select the criteria. Our model can
provide some insight for decision-making for each criterion
but cannot choose which criterion to use.

A high winning rate does not necessarily imply a good
play strategy. For example, to exploit the knowledge that SP
knocks as early as possible, we can knock late to gain an un-
dercut bonus and obtain a winning rate of 70.1% ± 0.75%
(90% CL). Nonetheless, this strategy is not advisable be-
cause it allows the opponent to complete more melds or go
Gin (Shankar 2015). This player would be far from optimal
and be exploitable itself. We reiterate that the goal of this re-
search is not to optimize the winning rate against the SP but
rather to find a policy that makes sophisticated, high-quality
decisions. Cumulatively making good decisions leads to a
better winning rate, as shown in the case of the Dual In-
ception player trained on the Random-16 and Random-256
datasets.

Conclusions and Future Work
We present a data-driven approach for hand evaluation. Dual
Inception is the most competitive model among all tested
architectures and datasets. Its success results from micro-
features extraction using CNN, exploring the state space
using MC simulation, and opponent hand estimation using
Bayes’ theorem. Data augmentation and all-stage datasets
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Dataset Model Train
loss

Valid
loss

Win rate
(%)

Simple MLP 87.4 87.7 42.9± 0.8
MLP-i 90.8 91.4 43.6± 0.8
Dual Inception 79.1 79.8 45.8± 0.8

Random MLP 159.0 159.4 44.0± 0.8
-16 MLP-i 149.2 150.0 42.3± 0.8

Dual Inception 83.0 83.0 50.1± 0.8
Random MLP 106.1 107.4 48.1± 0.8
-256 MLP-i 106.4 107.8 45.8± 0.7

Dual Inception 74.8 75.7 55.4± 0.8

(a) Experiment 1: Training MLP, MLP-i, and Dual Inception on
Simple, Random-16, and Random-256 datasets.

Simple MLP 153.7 154.5 34.3± 0.7
(All MLP-i 153.5 155.7 29.3± 0.6
stages) Dual Inception 144.1 146.5 19.7± 0.6

(b) Experiment 2: Training MLP, MLP-i, and Dual Inception on all
stage of Simple dataset.

Random Dual Inception 181.7 181.4 42.8± 0.8

-16-A Dual Inception
16 filters 132.6 132.0 51.2± 0.8

(c) Experiment 3: Training Dual Inception on augmented Random-
16 dataset.

Table 1: Performance of Dual Inception, MLP, MLP-i on the
Simple, Random-16, and Random-256 datasets. We record
the winning rate in games where these models served as the
primary discard-decision-making tools against SP. We com-
pute Wilson confidence intervals with a 90% CL on 10000
games. Data augmentation can more generally represent the
population but also introduces additional difficulty for the
learning process. Increasing the number of filters for each
convolution from 4 to 16 (35937 parameters) is necessary to
keep the model’s performance at the same level as the one
that was trained on un-augmented data.

are shown to introduce extra obstacles to the learning pro-
cess without any significant benefit.

There are various directions to extend this project. Firstly,
message passing (Fey and Lenssen 2019) should be con-
sidered an alternative to 2D convolution to avoid the arti-
ficial suit-ordering introduced by a matrix hand representa-
tion. Secondly, other state space exploration methods (e.g.
flat MC tree search) should be investigated as an alternative
for MC simulation in this study. Both message passing and
advanced state space exploration methods are much more
computationally expensive and require many complex and
non-trivial design decisions. Thirdly, a player that can jointly
optimize both offensive and defensive scores should be de-
veloped. Last but not least, reinforcement learning should
be investigated for Gin Rummy. Specifically, the training
cycle with CNN and MC simulation (described in the of-
fensive score section) could be repeated: we could recollect
data from a generation n − 1 player to re-train the model
and obtain a generation n player that has marginally bet-
ter performance than generation n− 1. Theoretically, with a
carefully designed network and (n→ +∞) generation, this

A 2 3 4 5 6 7 8 9 T J Q K

♣ 0.10 0.09 F 0.18 0.29 T 0.55 0.61 0.49 0.33 0.44 F 0.39

♥ 0.10 0.08 0.10 0.12 0.13 F F 0.33 F F 0.43 F 0.48

♠ F F 0.07 0.09 F 0.33 0.23 0.24 0.32 F 0.33 0.30 F

♦ 0.10 0.08 0.09 0.11 F 0.40 F 0.31 0.46 F F 0.14 F

(a) Opponent hand estimation and player’s hand (cyan).

A 2 3 4 5 6 7 8 9 T J Q K

♣ 0 0 1 0 0 0 0 0 0 0 0 0 0

♥ 0 0 0 0 0 1 1 0 1 1 0 0 0

♠ 1 0 0 0 1 0 0 0 0 1 0 0 0

♦ 0 0 0 0 1 0 1 0 0 1 0 0 0

(b) Real opponent hand. Violet (italic) are isolated cards. Orange
(italic and bold) are cards in meld. Other cards are in patterns.

5♠ : 0.16 A♠ : 0.01 6♥ : 0.90 5♦ : 0.09

7♥ : 0.13 3♣ : 0.10 7♦ : 0.40 9♥ : 0.53

(c) Defensive scores of player’s hand.

5♠ : −29.9 A♠ : −32.4 6♥ : −29.2 5♦ : −29.4
7♥ : −29.0 3♣ : −29.4 7♦ : −29.0 9♥ : −29.7

(d) Offensive scores of player’s hand.

Figure 7: Offensive-defensive dilemma: offensive optimum
is defensive suboptimum.

approach can produce a superhuman player as it was done
similarly in other games such as No-Limit (Moravčı́k et al.
2017) and Limit (Heinrich and Silver 2016) Texas Hold’em
Poker. Obtaining such a player is beyond the scope of this
paper. With limited time and computational resources, we
only demonstrate that CNN and MC simulation is a promis-
ing approach to develop an excellent player. Although re-
inforcement learning has achieved some successes in other
games such as Poker, the only prior work that applies re-
inforcement learning to Gin Rummy is (Kotnik and Jugal
Kalita 2003).

Gin Rummy is a complex, imperfect information game
that offers an excellent sandbox for research in decision-
making. With limited computational resources and time, we
show that CNN, MC simulation, and Bayes’ theorem can
formulate a player that can make complex decisions. While
this is a modest improvement, we establish a foundation that
brings the research community one step closer to achieving
superhuman Gin Rummy performance.
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