The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

A Deterministic Neural Network Approach to Playing Gin Rummy

Viet Dung Nguyen, Dung Doan, Todd W. Neller

Gettysburg College
{nguyviOl, doanduO1, tneller} @gettysburg.edu

Abstract

This paper describes a deterministic approach to building a
fixed-strategy gin rummy player. In the paper, we develop and
evaluate both heuristic and neural network models for inform-
ing draw, discard, and knock decisions in the game. In this
empirical study, we test performance of the models through
competitive game play, show which best inform strategy, and
demonstrate statistical significance of the improvement over
a simple strategy. Through this empirical study, we indicate
features that we expect to be helpful in future improvements
to Gin Rummy play.

Introduction

Gin Rummy1 is an imperfect information card game in
which one collects cards in sets or runs called melds, mini-
mizing deadwood points of unmelded cards so as to knock,
i.e. end the hand, and have the least deadwood points. We
use North American 25-point gin and undercut bonuses, and
declare the winner as the first player to score 100 points or
more over successive hands.

In this paper, we develop an Al Gin Rummy player that
learns play strategy in simulated play with a simple Gin
Rummy player class SimpleGinRummyPlayer supplies
as reference implementation for a Gin Rummy research
competition (Neller 2020). The Simple player implements
a simple strategy:

It ignores opponent actions and cards that are no longer in
play

It draws a face-up card only if it becomes part of a meld.
Otherwise, it draws face-down

It discards a highest-deadwood unmelded card, breaking
ties randomly and without regard to breaking up potential
meld patterns (e.g. pairs)

It knocks as soon as possible

We restrict the scope of our work to approaches
that are efficiently computable in real-time without high-
performance hardware for the purpose of fast, good, acces-
sible Gin Rummy play.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
! https://www.pagat.com/rummy/ginrummy.html

15622

We begin by describing prior work related to the compu-
tation of Gin Rummy strategy. We then introduce our de-
terministic approach for constructing or Gin Rummy Player.
Next, we define heuristic and neural network models that en-
gineer features that are helpful for learning play decisions:
card goodness/badness, opponent hand estimation, and the
goodness/badness of a decision to knock. We share our in-
tuitions for these models, our experimental means of col-
lecting training data, training non-heuristic features, and the
results of such experiments. Comparing the performance of
players that use different combinations of our engineered
models, we observe their relative strengths, and conclude
which models offer the greatest statistically significant im-
provements in Gin Rummy play.

Related Work
DeepStack

DeepStack (Moravéik et al. 2017) was one of two suc-
cessful approaches to optimal Heads-Up, No-Limit (HUNL)
Texas Hold’em Poker which, like Gin Rummy, is an imper-
fect information card game. DeepStack utilize concepts of
counterfactual regret minimization (CFR) (Neller and Lanc-
tot 2013), Monte Carlo Tree Search, and deep neural net-
work learning in order to continually recompute a belief
state regarding the opponent’s two hole cards, which re-
quires significant computational resources. The number of
non-abstract information sets in Gin Rummy is prohibitively
large given the 10-card hand in comparison to the 2-card
hand of Texas Hold’em Poker.

TD-Rummy

The work by Kotnik and Kalita (Kotnik and Kalita 2003) is
one of very few works that treat Gin Rummy specifically.
In particular, their use of artificial neural networks (ANNs)
influenced our decision to apply ANNSs to our approach. In
their work, they applied two different architectures of ANNs
to Temporal Difference and Evolution Learning models. In
their approach learning is continual and online, whereas we
desire to pretrain models offline with batch learning so as to
have fast real-time play decisions.

Deterministic Approach

Our approach to Gin Rummy play engineers features that
can effect one or more types of Gin Rummy play decisions,
training models that are based on fixed pattern decisions. In
this section, we will describe the reason why we choose this
approach which forms a fixed strategy Gin Rummy player,
and we also compare it to other approaches.

As with many sequential games both simple and com-
plex, the win/loss reward is delayed to the end of the game,
and the value of any given state is temporally separated
from stochastic feedback and thus not easily learned. As an
imperfect information card game (Blair, Mutchler, and Liu
1993) like Poker, counterfactual regret minimization (Neller
and Lanctot 2013) approaches as used by DeepStack could
presumably compute an optimal or approximately optimal
mixed strategy for the game. However, DeepStack’s con-
tinual resolving based on the current state is incompatible
with the real-time constraints of the research competition we
develop our agent towards (Neller 2020). An entire game
allows each player only 30 seconds of compute time for
all game decisions across all hands. Therefore, we much
seek a computationally efficient approach for our applica-
tion. While one could employ CFR to compute mixed strate-
gies offline for an abstraction of the state space, we initially
take a simpler approach.

One approach to making fast, good play decisions in Gin
Rummy is to apply reinforcement learning and train a de-
terministic player that maps states to actions without need
to solve a subgame. As in the paper on TD-Rummy (Kot-
nik and Kalita 2003), we also build a reinforcement learning
model that utilized an artificial neural network. We gener-
ated considerable play data using the contest SimpleGin—
RummyP layer simulating self-play. Most decisions in play
concern the draw (face-up/down), the discard, and whether
or not to knock when it is an option. We treat each of these
three types of decisions in isolation and seek to learn sepa-
rate models for aiding each of these three decisions. These
models then inform our reinforcement learning player’s de-
cisions. This player would then be able to generate better
play data from self-play and close the loop. However, in
this paper, we focus on what machine learning yields from
SimpleGinRummyPlayer self-play. More specifically,
we preprocess SimpleGinRummyPlayer self-play data
to create four models that inform our three draw, discard,
and knock decisions: hit card regression, opponent hand es-
timation, knock classification, and hand encoding.

Additionally, we decide to separate the training and play-
ing process in order to implement desired behaviors, which
is quite different from method used in the TD-Rummy paper
where the neural network was forward- and back-propagated
during game-play (Kotnik 2003, p. 24). In this study, we
perform a single batch learning iteration on collected sim-
ple play data in order to train multiple models labeled with
play outcome data. These models are then used to inform a
second generation player that we then evaluate.

One limitation of this preliminary work is that reinforce-
ment learning based on play against a fixed suboptimal
benchmark learns to exploit that benchmark through play
that is likely suboptimal itself. In the future, we envision

15623

that self-play as with DeepStack and its predecessors, would
possibly yield optimal play.

Game Play Decision Models
Card Value Estimation

We define the set of unknown cards to be those cards which
are not known to be in either player’s hand or in the discard
pile. We call an unknown card or the upcard, the top card
of the discard pile, a hitting card if, in combination with at
least one card in hand and possibly another unknown card,
it is possible to form a 3-card meld. We define the hit count
of a hitting card to be the sum over each card in hand of the
number of 3-card potential melds shared by that hand card
and the hitting card. The purpose of the hit count metric is
to indicate the future melding potential of a card relative to
one’s current hand.

If we only draw cards that form melds but do not collect
potential hitting cards, we do not quickly develop opportu-
nities to meld. When we draw a card with a high hit count,
we have a greater probability of forming melds faster, al-
though doing so with a face-up draw offers information to
the opponent of the current state of our hand.

Table 1 shows the results of a short experiment to de-
termine whether there is an advantage to drawing hitting
cards in addition to melding cards versus the SimpleGin-—
RummyPlayer. Inthe “No Hitting” case, we note the num-
ber of cards drawn face-up and melds formed when only
drawing cards that form melds. In the “Collect hitting” case,
we note the same statistics when additionally drawing a hit-
ting card with a probability of 0.5 when a hitting card is
available.

Strategy Draw face-up | Meld formed
No hitting 105,103 cards | 171,170 melds
Collect hitting | 123,504 cards | 176,374 melds

Table 1: Average cards drawn and melds formed at the end
of match over 50,000 hands of two play strategies

Card value with heuristic model: Let Deadwood(c;) be
the deadwood value of card ¢;. Let n; be the number of meld
types (runs or suits) that exist in the potential meld set with
card ¢; (0 if there is no meld, 1 if there are just melds or just
runs, or 2 if there are both types of meld). Hitting reward H,
hand-tuned to 3, is a constant that weights the significance of
having a higher potential of meld types for a card. The value
function R;(¢;) of a face-up card, ¢;, is defined as follows:

R;(c;) =13 + (n; X H) — Deadwood(c;) (1)

If a face-up draw card would form or extend a meld,
we automatically draw it without such heuristic evaluation.
However, if it would now immediately form or extend a
meld, we will choose to draw it if R;(c;) = T, where T is a
hand-tuned threshold value. In Table 2, we can see some of
the tuning results that indicate the number of melds formed
with different threshold values. When this threshold is not
met for a card, we instead draw face-down. Note that 7' = oo
means that a player never draws the face-up card.

Draw face-up | Melds formed
T=1 62,664 10,470
T=6 | 57,649 12,774
T=21 | 19,355 17,409
T=o00 | 10,988 14,396

Table 2: Performance of Hitting Player over Medium Player
KH after 1000 games with different configuration of thresh-
old value

Neural network approach: Our neural network model
consists of a feed forward deep neural network tested on dif-
ferent numbers of neurons per layer and numbers of layers.
Every unit of the network is a rectified linear unit. Our loss
function is mean square error. Network inputs and output are
as follows:

* Input - card deadwood points
* Input - turn of the game
* Input - card hit count

» Target Output: expected deadwood points from the card
at the end of the hand

We simulated over 5,000 games with a SimpleGin-
RummyP 1layer modified to additionally draw a face-up hit-
ting card with a probability of 0.5, creating over 500,000
input-output instances for each upcard draw decision, with
target outputs being the upcard deadwood value or O depend-
ing on whether the upcard contributed to a player’s hand
deadwood at the end of the hand.

Keras was used with this training data to train a feed-
forward neural network with 3 layers with sizes 64, 32, and
1. Training used a batch size of 1000 for 100 epochs. The
trained network appeared to converge to a MSE loss of 8.2.
We used the network to make play decisions by noting that
the network predicts the badness of drawing a card in the
form of an estimate of how much that card will cost us in
deadwood at the end of the hand. We therefore used the out-
put of the network with a hand-tuned threshold value T' = .4,
so that we would draw the face-up card if the expected dead-
wood value was strictly less than 7', and discarding the card
estimated to cost the most deadwood.

We observed then that the play performance result of this
neural network player against the original SimpleGin-—
RummyPlayer was inferior to that of our aforementioned
heuristic threshold model (Table 3). In the rest of our study,
we thus prefer use of our heuristic model.

Opponent Hand Estimation

Hand estimation, i.e. estimating the probability of each card
being in the opponent’s hand, can supply important informa-
tion for discard decisions. If one has a good opponent hand
estimation, we can rate the relative safety of different dis-
card options, i.e. how unlikely it would be for the discard
to help the opponent form a meld. When an opponent dis-
cards a card or does not draw the upcard, we estimate that
the opponent is less likely to hold cards that would form
a meld with that card. Similarly, when an opponent draws

15624

Heuristic | Neural
model Network
Winning percentages 45 -47 % | 20-24 %
over Simple Player
Average hitting card 0.04 2.63
drawn per hand
Average deadwood 15.54 18.43
per hand

Table 3: Heuristic and neural network model comparison
over 10000 hands play

the upcard, we estimate that the opponent is more likely to
hold cards that would form a meld with that card. However,
such observations do not specify an algorithmic approach to
opponent hand estimation. In this section, we examine two
algorithmic approaches to hand estimation: an application
of Bayes Rule to simulated play data, and a trained LSTM
network model.
Bayesian estimation of an opponent’s hand: One of our
novel approaches began as an attempt to take a heuristic
approach to opponent hand estimation and derive a similar
approach that is Bayesian and play data driven. While the
algorithm is not specified in (Rollason 2007), an opponent
drawing a face-up card increases the estimated probability
of having same rank or adjacent suit cards, and similarly, an
opponent discarding a card or refusing a face-up card de-
creases the probability.

Our approach begins with Bayes’ Rule and its simple pro-
portional form:

p4|B) = ZBIAPA) (B]'ng (4) @
P(A|B) o P(B|A)P(A) 3)

Here A represents the atomic sentence that the opponent
holds a specific card, and P(A) is the probability that the
opponent holds that card. Event B is an observation of an
opponent’s draw and discard behavior on a single turn. Prior
to event B we believe the probability of the opponent hold-
ing a specific card is P(A). After event B, our posterior
belief of P(A|B) is proportional to the frequency of ob-
serving the same draw/discard event in simulated play data
while holding that card, i.e. P(B|A) times our prior P(A).

We could naively collect play data to find the likelihood
of event B conditioned on A, but we may apply a help-
ful abstraction that enforces a rational symmetry concern-
ing (in)equality of the suits of the card in consideration,
the card drawn, and the card discarded. For example, we
have no reason to believe that the likelihood of the oppo-
nent drawing Q4 face-up and discarding K# conditioned
on the opponent holding K& should be any different than
that of drawing QQ, discarding K<, and holding K9, re-
spectively. What matters is the suited/unsuited relationships
of the draw/discard cards to the potentially held card.

For this reason, we abstract the frequency data we collect
from play on draw/discard events for each card with respect
to:

* Whether or not a card was drawn face-up
* Rank of the face-up card
* Rank of the card discarded

e Whether the card was suited with the face-up card and/or
discarded card

Play data was collected from 10, 000 simulated games be-
tween two SimpleGinRummyPlayers that (1) only drew
face-up when the card completed or extended a meld, (2)
discarded randomly from discards that would maximally re-
duce deadwood, and (3) knocked at earliest opportunity. Far
from optimal, this simple play nonetheless was adequate to
capture general statistics that adjusted probabilities similar
to the Al Factory Ltd. approach. In cases where fewer than
50 abstracted observations were observed, we opted not to
update our hand estimation. Cards known to (not) be in an
opponent’s hand are probability O or 1 and are not updated.

Given that each player starts with 10 cards of a 52 card
deck, our initial probability of a player holding a card is 0
for those cards in our own hand, and % for the 42 cards that
could be in the opponent’s 10-card hand. After each oppo-
nent turn, we checked our frequency data to see if we had
a minimum of 50 observations from which to form our ex-
pectation. If not, we conservatively do not revise our hand
estimation. If so, we multiply each unknown card estimate
by our frequency-based likelihood.

We then renormalize probabilistic estimates of unknown
cards so that the estimates sum to the number of unknown
cards in the opponent’s hand.

Our approach was inspired by an ad-hoc technique of Al
Factory Ltd sketched but not specified in a blog post (Rol-
lason 2007). However, whereas Al Factory appears to adjust
probabilities by chosen multiplicative constants, we apply
Bayesian estimation with abstraction and independence as-
sumptions.

LSTM Network Modeling: Although Long Short-Term
Memory (LSTM) networks have traditionally been applied
to time-series data from natural language, speech recogni-
tion, anomaly detection, etc. (Hochreiter and Schmidhuber
1997), we would observe that opponent hand estimations
evolve in time series with observations of opponent play be-
tween each time step. We therefore attempted to build an
LSTM network model with the following input-output spec-
ification:

Input - One-hot encoded vector of which card the oppo-
nent discarded this turn

Input - One-hot encoded vector of the upcard the oppo-
nent did not draw this turn (or zero vector if it was picked

up)
Input - One-hot encoded vector of the upcard that the op-

ponent did draw this turn (or zero vector if it was not
picked up)

Input - One-hot encoded vector of known cards that are in
our hand and in the discard pile

Target Output - Probability vector of our estimation of the
opponent’s hand after the turn

15625

Model: We simulated over 1,000 games between two
SimpleGinRummyPlayers supplied for the research
contest (Neller 2020), and use Keras to train the ANN model
and LSTM model.

For our feed-forward ANN model, we first flatten the four
input vectors and feed them through four rectified linear unit
(ReLU) layers of sizes 512, 256, 128, and 64, followed by
a final sigmoid layer of size 52, with one output unit corre-
sponding to our belief that a card is in the opponent’s hand.
Training used a batch size of 1500 for 50 epochs. The train-
ing did not appear to converge according to the observed
oscillation of the loss curve.

For our LSTM model, each of the four input vectors serve
as inputs to each of four LSTM cells with size 128 output
each. These four LSTM output vectors are concatenated as
a size 512 input vector to a multilayer feedforward neural
network with successive ReLLU layers of size 768, 256, and
64. This is followed by a final size 52 sigmoid layer. For each
successive turn, the aforementioned inputs are fed through
the network, and stored ground truth of what the opponent
held is used as feedback for training. Training used a batch
size of 1500 for 130 epochs. The trained network appeared
to converge to a categorical cross entropy loss of 12%.

Metrics: According to the normal accuracy metric, we
decided to evaluate the accuracy of Gin Rummy hand esti-
mation in 2 ways: categorical accuracy and binary accuracy.
For categorical accuracy, the accuracy is measured by sum-
ming the card accuracy c¢; (Equation 4) for each of the 52
cards, and then dividing that sum by the number of cards
(Equation 5).

“)

Cp = 1- ”Cactual - Cpredict”

n—1
Zi:ﬁ) Ci)

The binary accuracy, on the other hand, rounds each pre-
dicted value to be zero or one using threshold function T'
(Equation 6), and divides the total number of true positives
and true negatives by the number of cards (Equation 7).

Cate_acc =

0, ifz<05
T(x) = { 1, ifz 205 ©)
n-1
oo 1— Tcreic — Cactua
in Ace = Zt0 1= 1T Cpreaict) = coerall

n

When evaluating our LSTM network, for each turn, we
input the vector data sequence ranging from the first turn
through the most recent turn into our pretrained model. We
then observe that our best metric accuracy for our trained
LSTM model is an 81% categorical accuracy in the last turn
of a hand (Table 4) and worse for earlier turns. However, per-
formance according to this metric is worse than that of our
application of Bayes’ Rule for endgame and non-endgame
turns, so we decided to use our Bayes’ Rule estimation in
the construction of our players.

Application of hand estimation to discard decision:

We apply our opponent hand estimation model to discard-
ing decisions. In principle, discarding decisions consist of

Cate_acc | Bin_acc
ANN Model 69.38% | 60.85%
LSTM Model | 81.07% | 80.24%
Bayes System | 82.30% | 61.54%

Table 4: Metrical comparison among systems

two steps: choosing a set of candidate cards and choosing a
discard card from among those candidates. In the Simple—
GinRummyPlayer, the set of candidate cards consists of
unmelded cards that minimize the deadwood points after the
turn; then, from among those candidates, the player chooses
the discard card randomly. In players with our hand estima-
tion model, the players collect all unmelded cards in their
set of candidate cards. Thus, the candidate set may con-
tain lesser-deadwood cards that are safer to discard given
what we believe about the opponent hand state. From among
the candidates, the players will then choose the discard card
with two criteria: the desirability of the card to the opponent
and the card’s deadwood points.

The opponent’s desirability of a card is how much the op-
ponent wants the card. Because a rational player will surely
pick up a card if it completes a meld, we determine the desir-
ability of a possible discard by assuming it to be in the oppo-
nent’s hand and calculating the probability of the opponent’s
holding the rest of the cards in a certain meld determined by
summing over each possible meld with that card the prod-

uct of the estimated probabilities2 of having each card of the
meld, or

Desirability = Est_Prob(card)

all melds \cards of meld

®

The desirability, as expressed in the formula, mostly falls
within the range of [0,1], with some exceptions yielding
greater-than-one values because of inaccuracies in our hand
estimation. According to this formula, the lower the desir-
ability is, the safer for the player to discard the given card.

The second criterion of the discarding decision is the
given deadwood points of a card in the range of [1,10]. In
rational play, the higher the deadwood points, the more a
player would be inclined to discard a card.

To combine the two components into a single value for
comparison, we decided to bring the two criteria to the same
scale in a linear formula, which is suitable for our pur-
pose of comparison. All other consideration being equal,
the player’s benefit of discarding a card runs counter to
the opponent’s desirability of that card, we decided to use
the term (1 — desirability) to account for the importance of
our opponent hand estimate, and the term also falls within
the range of [0,1]. All other consideration being equal, the
player’s benefit is proportional to the discarded card’s dead-
wood points and because the deadwood points fall into the
range of [1,10], we decided to use the term (deadwood/10),

*The estimated probabilities we multiply are conditioned on
prior observed play history and our abstracted model for opponent

play.

15626

for the term falls into the range of [0.1,1], similar to that
of the desirability criterion. Given desirability D, deadwood
points dw, desirability weight Wpg = 1.0, and deadwood
weight Wpy = 3.0, we define a weighted heuristic formula
for the discard value formula:

dw

10 ©))

We use this formula to choose a discard most beneficial
to the player by discarding the card with highest discard
value (Equation 9) from among the candidates. The weight
coefficients were manually tuned according to player perfor-
mance.

Valuegiseara = (1 — D) X Wpg + X Wopw

When Should We Knock?

The decision whether to knock or not is not trivial. Although
one may knock after a turn where one has 10 or fewer dead-
wood points, it is not necessarily beneficial to do so. If one
had perfect information, one would knock so as to maxi-
mize the expected utility, taking into account game scores,
the outcome of laying off, etc., but without such informa-
tion, one is left with the question of whether or not there
is greater utility in continuing to reduce ones deadwood or
even go gin, melding all cards.

In this section, we list input features we believe are rel-
evant to a good knocking decision and describe our ANN
approach to modeling the knocking decision. We frame the
decision as a supervised learning problem with the following
inputs and target output:

Input - Number of turns

Input - Number of deadwood points

Input - Number of melds
Input - Number of hitting cards
Input - Number of cards drawn face-up by the opponent

Target Output - 1 or 0 if knocking results in a hand win or
loss, respectively

We simulated over 10,000 games between two modi-
fied SimpleGinRummyPlayers with varied deadwood
thresholds < 10 for knocking. This serves to provide a
greater sampling of the knocking decision state space. We
iterate through each valid pair of deadwood thresholds when
simulating and collecting our play data. We then use Keras to
train the ANN model with three ReLU feed-forward layers
of sizes 128, 64, and 32, and a final sigmoid layer of size 1.
We arrive at the knocking decision by thresholding the pre-
dicted value of the sigmoid layer, and knock if the threshold
is exceeded. We experimented with different threshold val-
ues (Table 5), and found the optimal threshold to be .9.

Experimental Evaluation of Players

In the previous sections, we have engineered new models
for aiding the three drawing, discarding, and knocking deci-
sions. In this section, we construct players that make use of
these models in order to modify the decision-making of our
baseline SimpleGinRummyPlayer for comparison. We
may describe our naming of these agents in a truth table style

Loss | Acc | Increased
winning
percentages

Threshold=0.7 0.16 | 0.83 | 8%

Threshold=0.8 0.14 | 0.84 | 10%
Threshold=0.9 0.14 | 0.84 | 12%
Threshold=1.0 0.14 | 0.84 | 11%

Table 5: Winning percentage increases over SimpleGin—
RummyP layer with knocking model. The dataset sizes are
.5M and 1.0M for the first and subsequent rows, respectively

with model incorporation marked T/F if those models are in-
corporated into new decision-making for the SimpleGin-
RummyPlayer (Table 7).

Player decision-making with these models is described
below:

Simple Player is the SimpleGinRummyPlayer
of (Neller 2020)

Knocking Player substitutes the Simple Player knocking
decision for that of our Knocking threshold model

Estimating Player substitutes the Simple Player discard
decision for one which makes the safest discard according
to our Bayesian opponent hand estimation

Hitting Player modifies both draw and discard decisions
with the Card Value model so as to draw and retain cards
predicted to maximize overall hand card value

Medium Player HE brings together the Hitting and Esti-
mating player modifications, by restricting discard candi-
dates to non-hitting cards and choosing among candidate
discards according to Equation 9 that moderates between
card value and safety considerations. In the case that all
cards are hitting-cards, then all cards are discard candi-
dates

Medium Player KH is constructed with both Hitting
Player and Knocking Player modifications

Medium Player EK is constructed with both Estimating
Player and Knocking Player modifications

Advanced Player is constructed with both Medium
Player HE and Knocking Player modifications

Comparative Results

We played each pair of players against each other for 10,000
games and present winning percentages in Table 6. All of
the confidence intervals are 90% Wilson confidence inter-
vals (Wallis 2013) over win percentages.

We analyse our results in three player categories: players
integrated with one decision-making model (the Hitting, Es-
timating, and Knocking Players), the players integrated with
two decision-making models (the Medium Player KH, EK,
and HE), and the player integrated with all three decision-
making models (the Advanced Player). The players’ com-
petencies are mostly based upon their performances against

15627

the Simple Player. Although other observations of the cre-
ated players playing against each other provide important
insights, we limit ourselves from reading too much into per-
formance of our own players against each other.

Among the players integrated with one decision-making
model, the Knocking Player performs well against the Sim-
ple Player, which is evident from its winning percentages in
the interval [57%,59%], while the Estimating Player and
the Hitting Player show a clear under-performance when
playing against the Simple Player with both winning per-
centages in the interval [45%, 47%].

Among the players integrated with two decision-making
models, the Medium Players integrated with the knocking
model outperform the Simple Player: the Medium Play-
ers KH and EK have greater-than-50% winning percentages
against the Simple Player, in the intervals [58%, 60%] and
[56%, 57%], respectively. The Medium Player HE, which
is not integrated with the knocking model, performs poorly
against the Simple Player with a winning percentage in the
interval [45%, 47%]. Furthermore, we also notice that the
Medium Player KH performs slightly better than the Knock-
ing Player, and the Medium Player EK performs worse than
the Knocking Player against the Simple Player. This sug-
gests that the card value model integrates better with the
knocking model than does the hand estimation, and that
the hand estimation model might expose the player to mak-
ing worse decisions than those of the Simple Player’s ran-
dom mechanism. Also, HE performs just as well as the sim-
pler Estimating and Hitting Players, suggesting that the card
value model does not integrate well with the hand estimation
model.

The Advanced Player, which integrates all three decision-
making models, continues to gain the advantage of the
knocking model in its strategy and performs well against
the Simple Player, with a winning percentage in the inter-
val [56%, 58%]. Its performance against the Simple Player
is better than that of the Medium Player EK and worse
than that of Medium Player KH. In experiments against the
Knocking Player and the Medium Player KH, the Advanced
Player also shows a poor performance with winning per-
centages in the intervals [42%, 44%] and [41%,43%], re-
spectively. These observations support our earlier conclu-
sion: the integration of the hand estimation model opens up
a weakness in the player’s strategy. The Medium Player KH
also performs better against the Advanced Player than the
Knocking Player does, showing again that the integration of
the knocking model and the card value model slightly boosts
the player’s performance.

From our experiments with these players, we can con-
clude that the integration of the knocking and the card value
model in the Medium Player KH is the the best strategy we
developed against the Simple Player.

Future Work

Training cycle: In this work, we have performed a single
training iteration on Simple Player play data, but in the fu-
ture we could use play data from our Advanced player’s self-
play and close the loop of a reinforcement learning training
cycle.

Simple Hitting Estimating Knocking Medium Medium Medium Advanced

Player Player Player Player Player KH Player HE Player EK Player
Simple Player \ 53-55 53-55 41-43 40-42 53-55 43 -44 42 - 44
Hitting Player | 45-47 48 - 49 38-40 37-39 48 - 50 35-36 34 -36
Estimating Player | 45-47 51-52 30-31 30 - 31 48 - 50 32-33 31-32
Knocking Player | 57-59 60-62 69-70 49 -50 68 - 70 57-58 56 -58
Medium Player KH | 58 -60 61-63 69 -70 50-51 68 - 69 58 -60 57-59
Medium Player HE | 45-47 50-52 49-51 30-32 31-32 32-33 30-32
Medium Player EK | 56-57 64-65 67 -68 42 -43 40-42 67 - 68 48 - 49
Advanced Player | 56-58 64-66 68 -69 42 -44 41-43 68 - 70 51-52

Table 6: 90% Wilson confidence intervals of win percentages for each row player against each column player for 10,000 games.

Card Hand Knocking | Player Name

Value | Estimation
F F F Simple Player
F F T Knocking Player
F T F Estimating Player
F T T Medium Player EK
T F F Hitting Player
T F T Medium Player KH
T T F Medium Player HE
T T T Advanced Player

Table 7: Simple Player model incorporation

Improved application of opponent hand estimation:
While we achieved some measure of success in estimating
the relative likelihood of an opponent holding each unknown
card, our poor play performance in applying that model sug-
gests that there are better ways to make use of such informa-
tion. Improved application of such opponent hand estimation
to play decisions should be a priority going forward.

Hand abstraction model: In Al Poker research, work has
been done to abstract similar Poker hands through bin-
ning (Shi and Littman 2001). This has the benefit of reducing
the number of information sets, thus computationally sim-
plifying analysis. An important question looking forward is
whether or not we can similarly abstract Gin Rummy hands
so as to simplify analysis for game play.

One approach might be to learn an auto-encoder that
essentially engineers a compact representation of a Gin
Rummy hand, reducing dimensionality and perhaps re-
vealing important features for decision-making. Tradi-
tionally, autoencoders were used for dimensionality re-
duction (Wang, Yao, and Zhao 2016) or feature extrac-
tion (Meng et al. 2017).

Conclusion

In this work, we introduce both heuristic and learned mod-
els for card goodness/badness, opponent hand estimation,
and knocking goodness/badness. For the first two of these,

15628

we define multiple models for evaluating alternatives. For
the learned models that appeared best according to our loss
functions, we used these to construct seven different players
to compare in performance against each other and a base-
line SimpleGinRummyPlayer. Each of these seven are
formed by using or not using one of our three decision-
making enhancements with respect to the Simple Player.

In Table 6, we observed that the best performance of
our seven player population was Medium Player KH, which
is constructed from decision components of the Knocking
Player and Hitting Player, and demonstrates a statistically
significant improvement over the Simple Player. Most of this
improvement can be attributed to our improved knocking de-
cision.

The Knocking Player uses our best performing deep neu-
ral network that learns knocking decisions from play data
generated with a modified Simple Player with varying dead-
wood thresholds for knocking. The Hitting Player modi-
fies both draw and discard decisions with the heuristic Card
Value (Equation 1) so as to draw and retain cards expected
to maximize overall hand card value.

In conclusion, we have constructed models to aid in draw-
ing, discarding, and knocking decisions in Gin Rummy. Rel-
ative to the Simple Player, we see that our knocking decision
model yields the greatest improvement in win-rate perfor-
mance.

References

Blair, J. R. S.; Mutchler, D.; and Liu, C. 1993. Games with
Imperfect Information. In Symposium on Games: Planning
and Learning, 59—67. URL https://www.aaai.org/Papers/
Symposia/Fall/1993/FS-93-02/FS93-02-009.pdf. AAAI
Technical Report FS-93-02.

Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Computation 9(8): 1735-1780.

Kotnik, C. L. 2003. Training Techniques for Sequen-
tial Decision Problems. Master’s thesis, University of
Colorado at Colorado Springs, Colorado Springs, Col-
orado, USA. URL http://www.cs.uccs.edu/~jkalita/work/
StudentResearch/KotnikMSThesis2003.pdf.

Kotnik, C. L.; and Kalita, J. 2003. The Significance of
Temporal-Difference Learning in Self-Play Training TD-
Rummy versus EVO-rummy. In Fawcett, T.; and Mishra,
N, eds., 20th Int’l Conf. on Machine Learning (ICML 2003),
369-375. Washington, D.C., USA: AAAI Press. ISBN 978-
1-57735-189-4. URL https://www.aaai.org/Papers/ICML/
2003/ICML03-050.pdf.

Meng, Q.; Catchpoole, D.; Skillicom, D.; and Kennedy, P. J.
2017. Relational autoencoder for feature extraction. In
2017 International Joint Conference on Neural Networks
(IJCNN), 364-371. doi:10.1109/1JCNN.2017.7965877.

Morav¢ik, M.; Schmid, M.; Burch, N.; Lisy, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowl-
ing, M. 2017. DeepStack: Expert-Level Artificial Intelli-
gence in No-Limit Poker. Science 356. doi:10.1126/science.
aam6960.

Neller, T. 2020. Gin Rummy EAAI Undergraduate Re-
search Challenge. URL http://cs.gettysburg.edu/~tneller/
games/ginrummy/eaai/. Last accessed on 2020-08-20.

Neller, T.; and Lanctot, M. 2013. An Introduction to
Counterfactual Regret Minimization. URL http://modelai.
gettysburg.edu/2013/cfr/cfr.pdf. Last accessed on 2020-08-
15.

Rollason, J. 2007. Predicting Game States in Imper-
fect Information Games. URL https://www.aifactory.co.uk/
newsletter/2007_02_imperfect_info.htm. Last accessed on
2020-08-16.

Shi, J.; and Littman, M. L. 2001. Abstraction Methods
for Game Theoretic Poker. In Computers and Games. CG
2000. Lecture Notes in Computer Science, volume 2063.
Springer, Berlin, Heidelberg. URL https://www.cs.rutgers.
edu/~mlittman/papers/cg00-poker.pdf.

Wallis, S. 2013. Binomial Confidence Intervals and Contin-
gency Tests: Mathematical Fundamentals and the Evaluation
of Alternative Methods. Journal of Quantitative Linguistics
20(3): 178-208. doi:10.1080/09296174.2013.799918.

Wang, Y.; Yao, H.; and Zhao, S. 2016. Auto-encoder
based dimensionality reduction. Neurocomputing 184:
232-242. ISSN 0925-2312. doi:https://doi.org/10.1016/j.
neucom.2015.08.104. URL http://www.sciencedirect.com/
science/article/pii/S0925231215017671. RoLoD: Robust
Local Descriptors for Computer Vision 2014.

15629

