
Random Forests for Opponent Hand Estimation in Gin Rummy

Anthony Hein1, May Jiang1, Vydhourie Thiyageswaran1, Michael Guerzhoy1,2,3

1 Princeton University
2 University of Toronto

3Li Ka Shing Knowledge Institute
anhein@princeton.edu, mayjiang@princeton.edu, vrt2@princeton.edu, guerzhoy@cs.toronto.edu

Abstract

We demonstrate an AI agent for the card game of Gin
Rummy. The agent uses simple heuristics in conjunction with
a model that predicts the probability of each card’s being in
the opponent’s hand. To estimate the probabilities for cards’
being in the opponent’s hand, we generate a dataset of Gin
Rummy games using self-play, and train a random forest on
the game information states. We explore the random forest
classifier we trained and study the correspondence between
its outputs and intuitively correct outputs. Our agent wins
61% of games against a baseline heuristic agent that does not
use opponent hand estimation.

Introduction
Gin Rummy is an imperfect-information card game. The
rules of the game, as well as Todd Neller’s baseline player,
are available at the EAAI 2021 Gin Rummy Challenge web-
site1.

Optimal play likely requires reasoning about the oppo-
nent’s strategy as well as reasoning about, for example,
which cards are in play. Instead of using only explicit rea-
soning, the agent we describe uses a statistical model that
predicts the opponent’s hand together with very simple rea-
soning in order to choose plays.

We fit a statistical model to game information states gen-
erated using self-play of a simple heuristic model. Specifi-
cally, we learn to predict, for each card, the probability that
it is in the opponent’s hand. The agent uses this information
as part of its strategy.

Statistical models are widely used in game-playing agents
instead of, or in conjunction with, explicit reasoning. For ex-
ample, AlphaGo (Silver et al. 2016) learns a value network,
which assigns scores to game states that correspond to how
good the states are for the agent. In (Veness et al. 2009),
the parameters of a heuristic evaluation function are learned
from game data. Learned models have been used to evaluate
properties of states in card games (Sang and Yoon 2019).

Kotnik and Kalita (2003) train an agent to play a version
of Gin Rummy using temporal difference learning (Sutton
and Barto 2018). They learn a feedforward neural network

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://cs.gettysburg.edu/∼tneller/games/ginrummy/eaai/

(ANN) as a value function. The ANN takes as an input a
52-dimensional encoding of the information state, with each
dimension corresponding to one of the cards in the deck,
with positive input values corresponding to possession of
the card, and negative values corresponding to the inacces-
sibility of the card to the agent. Our approach also utilizes
a learned non-parametric function of the information state.
However, our function is used for estimating the opponent’s
hand rather than the value of the information state.

We will first describe a baseline Gin Rummy agent due to
Todd Neller. We will then describe and evaluate our model
for estimating the opponent’s hand, show how the model can
be used to improve play, and evaluate the agent that uses
the model when playing. Our agent builds on the baseline
agent by incorporating the model’s predictions. Finally, we
analyze the model to show that it works as one would expect
some of the time, but its outputs sometimes diverge from
what we would expect some of the time.

A Simple Agent for Gin Rummy
In this Section, we describe a heuristic-based Gin Rummy
agent due to Todd Neller; our agent both builds on and is
evaluated against this baseline agent which will be explained
in the paragraphs to follow.

When prompted to draw a card, the baseline heuristic
agent will draw the face-up card if and only if it could be
melded with other cards in the agent’s hand. If the face-up
card appears in no prospective melds, the agent will instead
draw the face-down card. In doing so, the agent focuses itself
on melding cards so that it can get closer to knocking, and
avoids having a situation where the opponent knows which
cards the agent is holding.

To discard a card, the agent will consider all possible
hands created from the removal of one card and observe the
deadwood achieved with each possible hand (assuming the
best meld sets are played). The agent will then randomly
discard a card from the collection of candidate cards whose
removal leaves a hand with minimal deadwood. There are
two exceptions to this heuristic: the agent will not discard
a card they have just drawn from the face-up pile; and the
agent will not discard a card if it means that they will have
drawn and discarded the same card twice within the same
game. This strategy attempts to minimize the deadwood if
the opponent knocks at the next turn.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15545



The baseline heuristic agent will knock as soon as possi-
ble. When knocking, the agent will randomly select a best
meld set to report as its final melds. Generally, as the game
goes on the opponent’s deadwood will decrease, making it a
fair strategy to knock as soon as possible to avoid the possi-
bility of being undercut.

Random Forests for Opponent Hand
Estimation

We perform opponent hand estimation by assigning a score
to each card, with a higher score corresponding to a higher
probability that the card is currently in the opponent’s hand.
More specifically, given as input the information about the
current player’s hand, the draws, and the discards made thus
far, the goal of the model is to output, for each of the 52 cards
in the deck, the probability that the card is in the opponent’s
hand. We use multi-output random forests (Dumont et al.
2009) trained on games generated using self-play to achieve
this.

Multi-Output Random Forests
A random forest is an ensemble of decision trees, with each
decision tree trained on a subset of the training data. For
classification problems, at test time, all decision trees are
run on the input, and the output is the fraction of decision
trees that output 1, and can be thought of as the predicted
probability of 1.

Decision trees can be extended to multi-output set-
tings (Dumont et al. 2009). In a multi-output setting, the
output we are attempting to predict is a k-dimensional vector
of 1’s and 0’s. When training a decision tree in this setting,
we choose splits that minimize the average Gini impurity for
the k output dimensions. For k = 1, this reduces to choosing
splits that minimize the Gini impurity for the output.

In our case, we have k = 52 outputs. The i-th output’s
being 1 corresponds to the i-th card’s being in the opponent’s
hand. The i-th output is 0 otherwise.

We use scikit-learn (Pedregosa et al. 2011) to train our
random forest. We set the minimum number of samples for
a leaf to 2 to reduce overfitting, and train 100 trees. To speed
up training of trees, the algorithm considers at most

√
152 ≈

12 features for each split.

Training the Opponent Hand Estimator
We generated a dataset of information states and correspond-
ing opponent hand encodings through self-play by the base-
line heuristic agent. After running 20, 000 such games with
random deck initializations, and recording after each play –
defined as each end of a player’s turn to draw and discard,
excluding the initial face-up card plays – information about
the current player’s hand, the drawn and discarded cards, and
the opponent’s hand, the dataset contained 2, 571, 176 plays.

For each play, the information state encoding – the input
to the model – was constructed as a 3 × 52 array of one-
hot encodings of discarded cards, cards picked up by the
opponent, and cards in the current player’s hand. Note that
discarded cards include cards discarded by the opponent as

A♥ A♦ ... 10♥ ... ... K♣
Discarded 0 1 ... 0 1
Picked up 1 0 ... 0 ... ... 0

In hand 0 0 ... 1 ... ... 0

Figure 1: Encoding of an information state. The Ace of Di-
amonds and the King of Clubs were discarded. The oppo-
nent picked up the Ace of Hearts. The 10 of Hearts is in the
agent’s hand. The input vector for the random forest is of
length 3× 52 = 156

well as cards discarded by the current player that the oppo-
nent did not opt to pick up. See Fig. 1. The corresponding
output was the one-hot encoded hand of the opponent, as a
52-dimensional array.

We trained the classification model on a random subset of
100, 000 of the plays from 10, 000 of the games, and used
a separate, held-out, random 100, 000 of the plays from a
separate and independent set of 10, 000 games to test the
model.

Evaluating Opponent Hand Estimation Models
To evaluate the model, we used the standard classification
metrics of accuracy, precision, recall, and the F1 score. For
each of the 52 cards in the deck, the binary classification
model generates for each of the two classes the predicted
probabilities that the card is in each class, and the predicted
probability that the card is in the positive class can be inter-
preted as the probability that the card is in the opponent’s
hand. The accuracy then measures the proportion of correct
predictions out of all predictions, where a prediction for a
given card c is correct if the model outputs P (Yc = 1) > t
and the card is in the opponent’s hand or P (Yc = 1) ≤ t and
the card is not in the opponent’s hand. The parameter t is a
probability threshold that represents a tradeoff between pre-
cision and recall. We find that a threshold close to t = 0.25
maximizes the F1 score (see the next section).

Baseline Classifiers
We compared our classification model to two baselines: first
(B1), we simply select ten cards from the deck at random
to be in the opponent’s hand and classify the rest to be not
in the opponent’s hand. Second (B2), we predict ten cards
from the deck to be in the opponent’s hand, but incorporate
the information about discarded and picked up cards known
to the current player. In particular, for cards that are known
to be in the opponent’s hand – face-up cards picked up by
the opponent that have not been discarded – we predict that
those cards are in the opponent’s hand, and for the remaining
up to 10 cards of the opponent’s hand, we select at random
from the remaining cards in the deck that have not been dis-
carded. The performance of our random forest classifier on
10, 000 held-out game state-opponent hand pairs from the
randomly generated games in the test set – independent of
the games used in training – is compared to that of these two
baselines in Table 1. The random forest model outperforms
both baselines in every metric, and with an F1 score of 0.67

15546



Model Accuracy Precision Recall
B1 (no information) 0.6906 0.1956 0.1956
B2 (with information) 0.7407 0.3257 0.3257
Logistic Regression (t=0.25) 0.7154 0.4057 0.8102
Logistic Regression (t=0.3) 0.7648 0.4393 0.6507
KNN (k=5) 0.8023 0.4998 0.6666
Random Forest (t=0.25) 0.8330 0.5821 0.7889
Random Forest (t=0.3) 0.8796 0.6852 0.6266

Table 1: Opponent Hand Estimation Performance

at a threshold of 0.25, outperforms both a logistic regres-
sion model and a K-Nearest Neighbors classifier trained and
tested on the same data, with F1 scores of 0.54 and 0.57, re-
spectively. The comparably poor performance of the logistic
regression classifier could be attributed to the weakness of a
linear model for learning this complex task. We note, more-
over, that predicting all zeros – predicting that every card is
not in the opponent’s hand – would result in an accuracy of
1− 10

52 = 0.8, and that the random forest model outperforms
this as well.

Opponent Hand Estimation to Improve Play
We use Opponent Hand Estimation (OHE) in deciding
which cards to discard. Our approach uses OHE by estimat-
ing which cards are more likely to be drawn from the draw
pile. That is, we compute the quantity p(d)c for a card c that
is potentially in the draw pile, with p(d)c = 1 − p4c , where
pc is the probability of card c being in the opponent’s hand
according to our random forest model. We compute a score
w for each card, which represents the usefulness of the card
in forming melds.

For a card c1, together with one other card c2 from the
agent’s hand, we consider all the ways in which c1 and c2
could form a meld with an unseen card, for every c2. When
computing the weighted number of ways that c1 could be
used to form a meld, we weight each potential meld by p(d)c3 ,
with c3 being a card that could be in the discard pile. This
weighted number of ways that c1 could be used in forming
melds represents the usefulness of c1.

The quantity p(d) is computed using 1 − p4 to pull the
values of p(d) toward 1. We found that the model tends to
have p be close to 0.2. We are using p(d) as an estimate of
the probability that the card is in the draw pile, and found
that performance increases when larger p(d)s are close to 1.

For each card in the agent’s hand, we compute the dead-
wood points d of the hand if this card were discarded, sim-
ilarly to the baseline agent. In choosing the card to be dis-
carded from a hand, we use a linear combination of dead-
wood points d associated with discarding the card and the
score w the card. That is, for each card c and its associated
deadwood points d and score w, we compute the value v:

v = w × α+ d× (1− α)
We determine the value of α through a parameter search.

At α = 0.1, the win rate against the baseline agent is 0.6.
See Fig. 2.

0.0

0.2

0.4

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
alpha

W
in

 ra
te

Figure 2: The win rate for different weightings of the meld-
ing score w and the deadwood points d, out of 1000 games.

The agent discards the card with the lowest v. We want to
trade off the amount of deadwood points that accrue due to
discarding the card (hence we minimize d) and the number
of melds that we could not form due to discarding the card
(hence we want to minimize w).

In evaluating the OHE model, we ran a tournament of
1000 games between the baseline agent and our OHE agent.
The OHE agent won 610 games (61.0%) against the baseline
player.

What Does the Random Forest Classifier Do?
In this Section, we explore the random forest predictor to
see whether its functionality corresponds to what one would
expect. This Section is structured as a series of experiments:
we posit hypotheses about the behavior of the predictor, and
then confirm or disconfirm them.

We usually look at the difference between the outputs of
the random forest due to a change in the agent’s hand or
the discard pile. The differences are usually small, but sta-
tistically significant, since we use a large number of random
hands. Note that we transform the outputs of the random
forest when using them, amplifying the effect of the small
differences.

The outputs of the random forest are estimates for prob-
abilities, and we refer to them as such. However, as we
shall see, the probabilities are not calibrated, and should be
thought of instead as quantities that are positively correlated
with probabilities.

15547



Ace 0.02 (p <0.01)
2 0.03 (p <0.01)
3 0.02 (p <0.01)
4 0.02 (p <0.01)
5 0.02 (p <0.01)
6 0.01 (p <0.01)
7 0.01 (p <0.01)
8 -0.01 (p <0.01)
9 -0.06 (p<0.01)

10 -0.02 (p<0.01)
J -0.02 (p<0.01)

Q 0.002 (p = 0.2)
K -0.01 (p <0.01)

Figure 3: Changes in the average probability for the oppo-
nent’s holding a card of rankRwhen replacing a Queen with
a 9 in the list of cards discarded by the opponent

Discarding a higher-rank card means having lower-rank
cards. We expect that if the opponent discards a card of
rank R, they do not have many cards of rank > R, because
the algorithm will discard the highest-ranking card that’s not
in a meld.

We confirm that the random forest agrees with this intu-
ition with an experiment. For 250 random hands, we com-
pare the average probability of holding a card of each rank
when adding a 9 or a Queen to a list of four cards discarded
by the opponent. The results are in Fig. 3. If we see the
opponent discarding a 9 rather than a Queen, the estimated
probability of the opponent’s holding lower-ranked cards in-
creases, and the probability of them holding higher-ranked
cards decreases. For each rank R, we average the probabili-
ties the random forest outputs across all four suits. We indi-
cate the p-value in parentheses. Our sample of random hands
is large enough for all the changes to be significant.

Opponent’s discarding a card of a certain rank means
opponent is less likely to hold cards of the same rank.
If the opponent discards a card of rank R, we expect that
they do not have multiple other cards of rank R, because
otherwise they could potentially be melded. We confirm that
for 250 random hands, replacing a card of rank 10 discarded
by the opponent with a card of rank 5, the average probabil-
ity across all suits that the opponent holds cards of rank 5 in
their hand decreases by 0.009 (p < 0.001).

Opponent’s picking up a face-up card of a certain rank
makes them more likely to hold cards of the same rank.
Conversely, we expect that if the opponent chooses to pick
up a face-up card of rank R from the discard pile, the op-
ponent’s hand likely contains other cards with which the
picked-up card would form a meld. Because one way to form
a meld is to combine at least three cards of equal rank, one
possibility is that the opponent’s hand contains other cards
of the same rank as that of the face-up card. We confirm that
for 250 random hands, replacing a card of rank 10 picked up
by the opponent with a card of rank 5, the average probabil-
ity across all suits that the opponent holds cards of rank 5
in their hand increases by 0.03 (p < 0.001). Even ignoring

the picked-up card that is now known to be in the oppo-
nent’s hand, the average probability across all of the other
suits that the opponent holds cards of rank 5 increases by
0.026 (p < 0.001).

Opponent picking up a card of a certain rank makes
them more likely to hold cards of adjacent ranks. Since
a meld can also be formed by combining three or more cards
of the same suit with consecutive ranks, we expect that if the
opponent picks up a card of rank R from the discard pile,
they are more likely to hold cards of ranks adjacent toRwith
the same suit that could be used to complete a consecutive-
rank meld. Cards of the same suit with rank R − 2, R − 1,
R+ 1, or R+ 2 are most likely to serve this purpose.

To verify that the model captures this intuition, we again
replace a card of rank 10 picked up by the opponent with a
card of rank 5 for 250 random hands. As expected, we find
that when the opponent picks up the card of rank R = 5
rather than rank 10, the probability that the opponent also
holds the card of rankR+1 = 6 from the same suit increases
by 0.02 (p < 0.001) and the probability that the opponent
also holds the card of rank R + 2 = 7 from the same suit
increases by 0.006 (p = 0.0017). The probability that the
opponent also holds the card of rank R + 3 = 8 from the
same suit instead decreases by 0.07 (p < 0.001), and the
probability that the opponent also holds the card of rankR+
4 = 9 from the same suit decreases by 0.1 (p < 0.001).

Noting that 6 and 7 are four and three ranks below rank
10, respectively, while 8 and 9 are two ranks and one rank
below rank 10, respectively, these results agree with our in-
tuition: the cards of ranks between 5 and 10 that are adjacent
to and more likely to be melded with the card of rank 5, are
predicted to be in the opponent’s hand with higher probabil-
ity when the opponent picks up the card of rank 5, whereas
the cards that are adjacent to and more likely to be melded
with the card of rank 10 are predicted to be in the opponent’s
hand with higher probability when the opponent picks up the
card of rank 10 instead.

The agent’s holding a card of a given rank makes the op-
ponent less likely to hold a card of the same rank. If I
am holding an Ace, there are fewer Aces for my opponent.
We confirm this observation with an experiment: in 1000
random hands, we replace one of the agent’s cards with a
card of a different rank. We observe a decrease in the esti-
mated probability of the opponents’ holding a card of rank
R if the agent holds a card of rank R by 0.015 (p < 0.001).

Probabilities should approach 0 or 1 during the
endgame. If we have seen all the cards, the probabilities
for unseen cards should approach 0 and 1. In fact, that does
not happen. The random forest estimates almost all proba-
bilities to be close to 0.2 (see Fig 4). This may be an arti-
fact of the fact that we train the random forest on all game
states, most of which are not at the endgame. Note that, for
52 cards, of which 11 are known to definitely not be in the
opponent’s hand (the agent has 10 in its hand, and sees the
face-up card), and without any further information (i.e., at
the beginning of the game), the probability of an unseen card
being in the opponent’s hand is 10/41 = 0.24.

15548



0

2

4

6

0.0 0.2 0.4
prob

de
ns

ity

Figure 4: A density plot of the probabilities that the card is
in the opponent’s hand, for each card, at the endgame. Data
collected from 100 random game states.

Probabilities do not go to 0 or 1 in the middle of the game.
In a random hand, having all of the 2’s be in the discard pile
only decreases the estimated probability that the opponent
has a 2 by 0.025. This again may be explained by not having
enough endgames in the dataset.

The probabilities are roughly symmetric with respect to
suit. It should be the case that, if for example Diamonds
are switched with Spades throughout, the probabilities for all
cards remain the same. That is roughly the case. In 500 ran-
dom game states, we switched two random suits in the game
state. We then compared the probability distribution over the
opponent’s cards evaluated using the game state with the
suits switched to the distribution over the opponent’s cards
when the suits are not switched. The median correlation be-
tween the probabilities obtained in the two ways is 0.84,
indicating a substantial agreement. The correlation should
reach 1.0 with a very large training set, since the agent used
to generate the training set treats all suits the same.

In future work, we will compute the probabilities by com-
puting them using all 4! = 24 permutations of the suits, and
averaging the probabilities across the suits.

Overall assessment. The random forest model we use is
a substitute for analytically computing the probability distri-
bution over the opponent’s cards by enumerating all possi-
ble games. The random forest model captures some, but not
all intuitions about the probability distribution over the op-
ponent’s cards. It does so without needing to enumerate all

possible game trees.
The “probabilities” that the model outputs are informa-

tive, but are poorly calibrated. That is part of the reason that
we transform them when using them to decide on plays.

In addition, we observed that our model seems to be over-
fitting. For example, we expect that as the training set size
goes to infinity, the model will become exactly symmetric
with respect to suit.

Moreover, the model was trained against a particular
agent. That means that the outputs of the model will not nec-
essarily work when playing against a substantially different
agent.

Conclusions and Future Work
We presented an AI agent that plays Gin Rummy. The agent
uses a random forest model to estimate the opponent’s hand.
Random forests are easy to train and run. We find that they
can, to some extent, substitute for explicit reasoning.

We show that the random forest model we trained behaves
how an explicit algorithm with reasoning incorporated into it
would behave in some situations, but behaves sub-optimally
in other situations. This is explained in part by overfitting.

We see several ways that future work could enhance our
analysis. First, our opponent hand estimation strategy does
not weight recent events more heavily than events at the be-
ginning of a round, even though events later in a round may
be more informative as both players improve their hands to-
ward forming melds. One possible strategy to address this is
to weight more recent events more heavily when construct-
ing the information state vector.

Further, we compared our random-forest-based opponent
hand estimation strategy to simple baselines. Future work in-
cludes comparing the random forest model to better heuris-
tic methods for estimating which cards are in the opponent’s
hand, and possibly combining the heuristic and learning-
based approaches.

Finally, our agent is only concerned with our own score
when deciding what card to discard. Another direction in-
volves using opponent hand estimation to play in such a way
as to prevent the opponent from forming melds.

References
Dumont, M.; Marée, R.; Wehenkel, L.; and Geurts, P. 2009.
Fast multi-class image annotation with random subwindows
and multiple output randomized trees. In Proc. International
Conference on Computer Vision Theory and Applications
(VISAPP), volume 2, 196–203.

Kotnik, C.; and Kalita, J. K. 2003. The significance of
temporal-difference learning in self-play training td-rummy
versus evo-rummy. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), 369–375.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research 12: 2825–2830.

15549



Sang, B.; and Yoon, S. 2019. A Neural Network Approach
for Birds of a Feather Solvability Prediction. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, 9706–9712.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture 529(7587): 484–489.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An Introduction. MIT press.
Veness, J.; Silver, D.; Blair, A.; and Uther, W. 2009. Boot-
strapping from game tree search. In Advances in Neural
Information Processing Systems, 1937–1945.

15550


