
A Reciprocal Embedding Framework For Modelling Mutual Preferences

R. Ramanathan,∗1 Nicolas K. Shinada,1 Michinobu Shimatani,2 Yuhei Yamaguchi,2
Junichi Tanaka,2 Yuta Iizuka,2 Sucheendra K. Palaniappan1

1SBX Technologies Corporation, Tokyo, Japan
2Tapple Inc., Tokyo, Japan

{ramanathan, shinada, suchee}@sbx-corp.com,
{shimatani michinobu, yamaguchi yuhei, junichi tanaka, yuta iizuka}@matchingagent.co.jp

Abstract

Understanding the mutual preferences between potential dat-
ing partners is core to the success of modern web-scale per-
sonalized recommendation systems that power online dating
platforms. In contrast to classical user-item recommendation
systems which model the unidirectional preferences of users
to items, understanding the bidirectional preferences between
people in a reciprocal recommendation system is more com-
plex and challenging given the dynamic nature of interac-
tions. In this paper, we describe a reciprocal recommendation
system we built for one of the leading online dating appli-
cations in Japan. We also discuss the lessons learnt from de-
signing, developing and deploying the reciprocal recommen-
dation system in production.

Introduction
There has been a huge surge in people going online to seek
potential partners in recent years with the rapidly evolving
social media platforms on the internet. Owing to their ease-
of-use, low costs and privacy proposition, online dating apps
have become mainstream and are increasingly preferred over
traditional dating channels. However, there are several fac-
tors that make recommending partners an interesting and
challenging problem.

First, people have eclectic tastes and their preferences
change over time. For instance, at the time of registering
in an online dating app, people would hold a certain pre-
conceived preference profile and start liking an initial set of
people recommended to them according to this preference
profile. However rejection may happen and in reacting to
the feedback they receive, they might broaden their prefer-
ences quickly when they find their interests are not convert-
ing into matches. On the other hand, it could also turn out
that their preference can become more concentrated towards
a set of users who have certain traits if the feedback they
receive reinforces their preconceived interests towards those
traits. Hence people’s preferences drift over time with every
interaction they have with the recommendation system and
as such it is hard to model user intent even when there is
sufficient training data.

∗R. Ramanathan is the corresponding author.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Second, unlike traditional recommendation systems
where users interact with static items, human interactions are
bidirectional. This means getting the right recommendations
to the right user at the right time is just not enough. More im-
portant is to also get the right target users who would recip-
rocate the subject users’ interests. This is called as the recip-
rocal recommendation problem. It pertains to encoding and
learning bidirectional preferences of users for serving rec-
ommendations that maximize the potential for mutual likes.

Third, we observe that the interaction network is often ex-
temely sparse (density of 0.00001). Network density here is
defined as the fraction of actual interactions over all possi-
ble interactions across all possible pairs of users. This indi-
cates that users are very selective about their preferences and
have fewer interactions, despite having similar tastes with
that of other users. Hence in addition to solving the informa-
tion overload problem, reciprocal recommendation systems
should be careful not to overload the users with poor recom-
mendations as rejection directly impacts user retention for
the application.

While a wide variety of methods have been developed
for learning latent representations in classical recommender
systems (Agarwal and Chen 2009), applying them to the re-
ciprocal setting is challenging due to the bidirectional nature
of preferences. Collaborative filtering (Sarwar et al. 2001)
techniques in literature can be classified into neighborhood-
based methods (Xia et al. 2015, 2016; Pizzato et al. 2010)
and model-based methods (Kleinerman et al. 2018; Wang
et al. 2017). Recently (Neve and Palomares 2019) proposed
a latent factor model based approach to compute the uni-
directional preferences between two potential partners and
fuse them to derive a single mutual preference score. While
the modelling strategy of fusing preferences in our frame-
work is closely related to this line of work, which the authors
developed for a matrix factorization based model, our frame-
work is not limited by the choice of the preference modelling
algorithm.

Overview
Our embedding framework encompasses three fundamen-
tally different preference modelling algorithms from matrix
factorization to learning-to-rank to neural network based al-
gorithms. From a practical standpoint, this is critical for
three reasons. First, in contrast to a single model, our frame-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15385

work allows us to tailor the recommendations based on
the data distribution in production. For instance, user de-
mographics and other user metadata features are difficult
to incorporate in matrix factorization for new users who
dont have past interactions. A neural network based method
which easily allows concatenating these features as categor-
ical embeddings performs better in such cold start scenarios.
Second, in our setting of a heterosexual online dating appli-
cation, we observe men are more active in sending likes or
dislikes vis-a-vis women who are often reactive. The choice
of the preference modelling algorithm is sensitive to this
asymmetric distribution of interactions. Finally, we have to
tune the preference aggregation function based on the pref-
erence modelling algorithm adopted in the previous step.

In essence, we present a novel framework designed to
handle the nuances of real-world data to provide reciprocal
recommendations in production that goes above and beyond
a single algorithm.

The interactions in our online dating application consists
of user activity when they like or dislike another user recom-
mended to them. We first separate this interactions dataset
into two disjoint unidirectional interaction subsets: men-to-
women and women-to-men. From these datasets, we then
learn the user preference vectors that model the latent unidi-
rectional preferences of men towards women and of women
towards men respectively. Finally, these unidirectional pref-
erences are then combined using an aggregation function to
learn the bidirectional preferences and eventually to score
the reciprocal recommendations.

This paper is organized as follows: Section presents the
perspectives on the dataset. Section describes the proposed
reciprocal recommender framework. In Section , we discuss
the challenges in taking our models to production and our
deployment strategy using a serverless framework. Finally
Section closes with the conclusions and possible lines of
future work.

Data Analysis
Before we formalize our approach, we first conducted an
empirical analysis of the data. Tapple1 is a Japanese online
dating application that connects young people based on their
hobbies and interests. Once a user has been on-boarded to
the application, they are presented profiles of the opposite
gender which they can either like or dislike. A match hap-
pens when two users like each other and matched users can
start a conversation by exchanging messages. The applica-
tion, in service since 2014, has over 5 million registered
users and has made over 200 million successful matches.
The main focus of our approach is to optimize the potential
for mutual likes between users.

Long-Tail Distribution of Interactions
Figure 1 shows the cumulative distribution functions for the
number of interactions that each user has been part of over
3 months. The activity quotient defined as the number of in-
teractions per user for each of the interactions: likes, dislikes
is shown in Figure 2. Similarly, the attractiveness quotient

1https://tapple.me/

(a) Likes (b) Dislikes (c) Matches

Figure 1: Cumulative distribution of the interactions

(a) Likes (b) Dislikes

Figure 2: Distribution of the interactions given by a user

(a) Likes (b) Dislikes (c) Matches

Figure 3: Distribution of the interactions received by a user

of each user both in terms of the received likes, dislikes and
matches are depicted in Figure 3. It is easy to see that these
quantities tend to approximately follow the power-law (X-
axis and Y-axis are in log-scale), and suggest the presence
of both ‘power users’ who are part of a large number of in-
teractions, and a long tail of users with focussed interest in
a small set of other users.

Temporal Evolution of User Activity
From Figure 4, we can understand the time-dependent be-
havior of a user’s activity. Every point corresponds to counts
of interaction pairs of a given user in log-scale. The Y-axis
denotes the number of days passed since the particular user
previously interacted with the reciprocal recommendation
system. This indicates the existence of a large number of
active users, as opposed to other reactive users with less
frequent interaction patterns. If users’ preferences change
quickly with time which is prone to happen in a reciprocal
recommendation setting, our models should also be updated
frequently to account for this evolution.

Location Distribution of Users
Figure 5 shows a heatmap of location pairs extracted from
all interactions between two users in a month across Japan’s
47 prefectures. We see that most of the interactions happen

15386

(a) Frequency distribution of the user interactions

Figure 4: Distribution of matches and user activity

within the same prefecture and rarely between neighbour-
ing prefectures. Location specfic models developed to ex-
ploit this homogeneity will allow not only scalable solutions
but also prevent online evaluation methods getting contam-
inated from network effects. More specifically, in A/B test-
ing, if two users from different locations are assigned ran-
domly to two different groups and interact with each other,
higher order effects will result in one user affecting the be-
haviour of the other user as they interact. This can be allevi-
ated by location-specific A/B testing where users within the
same location can be assigned to the same group.

Evidently it is important to take into account the temporal
and spatial dynamics of the dataset when designing a rec-
ommender system for such a large scale online dating plat-
form. An interesting aspect of the data distribution here is
the high match rate per user which could be directly mod-
elled using traditional collaborative filtering algorithms de-
vised for the user-item recommendation setting. However,

Figure 5: Interaction distribution across Japan’s 47 prefec-
tures

not all users would have past matches and one has to model
user preferences using past behaviour i.e., from the profiles
they have either liked or disliked in the past. As we will see
from Section , recommendation quality can be improved for
all users by first learning unidirectional preference embed-
dings of users separately and then fusing them to model their
mutual preferences.

In the following section, we present our proposed recom-
mender framework.

Reciprocal Recommendation System
We first formally define the reciprocal recommendation
problem. In our setting focussed on heterosexual online dat-
ing, a reciprocal recommendation system can be viewed as a
bipartite graph G defined by (X,Y,E) where X and Y de-
note the partitions of nodes that represent men and women
in the system, E denotes the set of directed edges in G. Any
directed edge from x ∈ X to y ∈ Y (or from y′ ∈ Y
to x′ ∈ X) is associated with a mapping ψ: X → Y (or
Y → X) that captures the preference of x for y (or the
preference of y′ for x′). Preference takes value 1 in case of
a like, 0 in case of a dislike or unknown. More concretely,
ψ : (X × Y) ∪ (Y ×X)→ {0, 1}.

Problem Formulation
Given a member xi ∈ X (or yj ∈ Y), the objective of the
reciprocal recommender algorithm –based on historical in-
teractions between members– is to come up with a ranked
list [y(1)

i , y
(2)
i , ..., y

(n)
i] (or [x(1)

j , x
(2)
j , ..., x

(m)
j]) of potential

preferences likely to result in mutual likes.
We first learn the unidirectional preferences from X to Y

and Y to X using collaborative filtering. A number of tech-
niques from latent factor models to neural networks have
been widely adopted in the classical user-item recommenda-
tion context in literature. We will focus on three techniques
which allow us to navigate the entire model spectrum from
simple, linear models that are scalable, on one end to more
flexible, non-linear models which enable feature-rich repre-
sentations, on the other end.

Latent factor models based on matrix factorization have
been popular in the industry for a long time. Training and
serving matrix factorization models that are based on the
simple inner-product operator, is easily scalable to large
datasets. While matrix factorization optimizes for direct
prediction for relevance by optimizing point-wise scores,
learning-to-rank techniques offer a class of methods that op-
timize on partial ordering of scores to learn a ranked order of
relevance. On the other hand, deep neural networks (Dziu-
gaite and Roy 2015; Salakhutdinov, Mnih, and Hinton 2007;
He et al. 2017) allow us to exploit the rich side information
like demographic and temporal features of users which are
hard to incorporate into matrix factorization based methods.

Once we learn the vector representations of X’s prefer-
ences and the vector representations of Y ’s traits from their
unidirectional preferences: X to Y , and that of Y ’s prefer-
ences and X’s traits similarly from the unidirectional pref-
erences: Y to X , they can be combined to produce the fi-
nal prediction of the mutual preferences using an aggrega-

15387

Figure 6: Modelling reciprocal user preferences

tion function. A schematic representation of the reciprocal
embedding framework is shown in Figure 6. A range of
aggregation strategies can be applied to fuse unidirectional
preferences from arithmetic mean, harmonic mean, product,
weighted mean, set union, intersection, inverse product be-
tween recommendation ranks, etc.

Matrix Factorization
We consider the weighted version of matrix factorization
in our experiments. Given a binary (or real-valued) matrix
R|X|×|Y | (and R′|Y |×|X|) which captures the observed in-
teractions, the matrix factorization model approximately de-
composesR|X|×|Y | (andR′|Y |×|X|) into a dot product of two
low-rank matrices of dimension k:

R|X|×|Y |︸ ︷︷ ︸
Interaction Matrix

≈ P|X|×k︸ ︷︷ ︸
X-User Matrix

· QT
|Y |×k︸ ︷︷ ︸

Y-User Matrix

(1)

These low-rank approximations constitute the embedding
matrices that model the user preferences. Matrix factoriza-
tion optimizes the regularized squared loss objective using
stochastic gradient descent:

= min
P,Q

∑
x,y∈R

(
rxy − pTx qy

)2︸ ︷︷ ︸
Squared Loss

+λp||px||2 + λq||qy||2︸ ︷︷ ︸
L2 Regularization

(2)

where the preference score between embeddings px and
qy is given by pTx qy =

∑k
j=1 pxj · qyj .

Learning to Rank
In contrast to the point-wise loss function of matrix factor-
ization, Bayesian Personalized Ranking (Rendle et al. 2012)
(BPR) formulates the unidirectional preference extraction of
the reciprocal recommendation task as a pair-wise ranking
optimization problem that directly optimizes the AUC (Area

Under The Receiver Operating Characteristic Curve) metric.
In BPR, training examples are pairs of positive and negative
samples for a given user. (x, yi, yj) denotes that a user x
prefers a potential partner yi over yj . The BPR-Loss func-
tion is given by the objective:

= −
∑
x

∑
(yi,yj)∈Rx

lnσ(sij(Θ))

︸ ︷︷ ︸
Log-Loss

+ λΘ||Θ||2,︸ ︷︷ ︸
L2 Regularization

(3)

where Θ is the posterior parameter by Bayes’ rule that
will be learnt, sij(Θ) is a difference function sij(Θ) =
si(Θ)− sj(Θ) where si is a preference scoring function for
a potential partner yi given a user and σ denotes the sigmoid
function. The preference scoring function is usually given by
the inner product pTx qyi

for any given user x as seen earlier
in matrix factorization.

Neural Network
Recently, a number of neural network based recommender
systems have shown that neural functions better model com-
plex interactions (He et al. 2017) not modelled by matrix
factorization based methods due to the limitations of the dot-
product as it violates the triangle inequality. A feed forward
neural network to model the interactions can be defined as:

= Φ(pTx , qy) (4)

where Φ denotes the interaction function of the neural net-
work which optimizes the squared loss objective from Equa-
tion 2. The users embeddings are also optimized jointly with
the model parameters in Φ through stochastic gradient de-
scent. Side features that embed user metadata can be con-
catenated to the embedding vectors to form a wide first layer.
This is then followed by several layers of non-linear activa-
tions (fully connected ReLU layers). We use negative sam-
pling to reduce the model complexity by modifying only a
small set of weights (Goldberg and Levy 2014).

The Reciprocal Recommendation Pipeline
From a practical implementation perspective, we adopt the
classical two stage information retrieval pipeline to generate
top-K recommendations. The first stage is the candidate gen-
eration stage that generates a few hundred good candidates
from hundreds of thousands of users, using the collaborative
filtering algorithms presented above.

Recommendations from the candidate generation stage
are then further filtered in the second stage where we per-
form online re-ranking to produce a few tens of high quality
recommendations. Balancing for relevance and discovery is
key to keep the recommendations fresh and diverse. Since
users’ active times may vary, it is important to recommed
users who are more recently active in the application lest
the possibility of inactive users not responding to likes and
thus resulting in poor user experience. The core purpose of
the online re-ranking stage is to balance multiple objectives
to blend recommendations from relevance models, recently
logged in users, newly registered users and debiasing popu-
lar recommendations.

15388

Figure 7: Candidate generation from reciprocal embeddings

We conduct our offline experiments in Python 3.6 on a
Linux PC with Ubuntu 18.04 environment on an 8-core Intel
Core-i9-9900K CPU with 64 GB of RAM. In all our experi-
ments, we use one month’s data as training data, and the sub-
sequent week’s data as validation data. We use average re-
call as an offline evaluation metric. Since further re-ranking
of the candidate pool at serving time filters recently active
users, online A/B testing can be performed for more accu-
rate evaluation.

Evaluation
We present the initial results from our proposed candidate
generation framework. To evaluate the quality of the recom-
mendations, we compare against a baseline model that learns
user preferences solely based on past matches information.
We recall that the training data distribution has a signifi-
cantly high number of matches per user as can be seen from
Figure 3 from Section . It is reasonable to compare against
a conventional recommender system (Match-RS) that learns
mutual preferences directly from the match information (this
does not need combining unidirectional preferences) as a
baseline. In comparison to the best performing Match-RS
model, our reciprocal recommender system (RRS) achieves
significantly higher average recall on test users for both likes
and matches.

In order to measure the live performance of our approach

Method Average Recall
Matches Likes

RRS vs Match-RS +16.9% +26.74%

Table 1: Performance comparison of our reciprocal recom-
mender system against a conventional recommender system
based on match data

in production, we devised engagement and conversion as
online metrics. Engagement measures the fraction of rec-
ommendations which converted into likes while conversion
quantifies the fraction of likes which eventually converted
into mutual likes or matches.

Initially while the recommendations generated from the
vanilla candidate generation stage resulted in significant per-
formance gains in engagement, we observed hardly any
change in conversion. After deploying the online re-ranking
routine, conversion scores improved by upto +60%.

Parameter Configuration
For all our models, we used Adagrad (Duchi, Hazan, and
Singer 2011) and Adam (Kingma and Ba 2014) which are
popular extensions to the stochastic gradient descent based
algorithm widely used in many applications. We set the
learning rate parameter to 0.001 and embedding dimension
hyper-parameter to 50. For the neural network model, we
devised 3 hidden layers that handle the complexity, regular-
ized the model using a dropout layer, with dropout factor set
to 0.5 to avoid overfitting.

Model Serving
In this section, we present the deployment strategy for scal-
ing our models in production. Our reciprocal embedding
framework processes the input data (implicit feedback via
clicks and explicit user-profile data) collected from the up-
stream mobile app and for each user returns a set of potential
users who are likely to match. It consists of the following
four core components:

1. Preprocessing

2. Training

3. Batch Inference

4. Live Inference End-point

Figure 8 shows the individual components of our archi-
tecture and the flow of control and data between them. Each
of these components would have different operational envi-
ronment requirements for different models and routines. To
tackle this, we dockerize the routines to containerize each of
the components into their respective microservices.

A trigger service listens at regular intervals for events
that capture latest input dataset being dropped into a spe-
cific location in the cloud storage. This input dataset usu-
ally contains both the implicit and explicit user behaviour
information. As soon as this dataset arrives, the trigger ser-
vice spawns a cloud instance that runs the preprocessing ser-
vice which subsequently triggers the training service that
hosts our collaborative filtering framework. Upon success-
ful retraining of user embeddings, another cloud instance is
instantiated in which the inference algorithms generate the
recommendations. Each cloud instance is dynamically con-
figured to suit the compute and memory requirements per-
taining to the nature of the data and compute load demanded
by the particular service, and created only when required and
turned off after their use.

15389

Recommender API
Next we developed a REST-API service that processes re-
quests from the mobile application environment via GET
and POST methods for requested user IDs. Since our recom-
mendations are precomputed and uploaded to a distributed
key-value store, every request is forwarded to the distributed
key-value store’s data stream which in turn processes the re-
quests. If the user ID in the request is that of an existing
registered user in the system, their pre-comptued recommen-
dations are returned from the distributed key-value store. On
the other hand, if the user is a newly registered user, the API
notifies the same to the application environment and that it
expects a POST method containing the user’s demographic
features in its body. Based on the received user information,
requests are forwarded to a live end-point service that hosts
the models for online inference in memory. Consequently
the recommendations are generated for the new user and be-
fore forwarding the recommendations to the application, a
copy of the new recommendations generated are stored back
in the distributed key-value store.

As new models are built in successive retrain cycles, rec-
ommendations generated by old models from previous runs
become stale and have to be gracefully discarded. We de-
vised a time-to-live mechanism that enables periodic dis-
posal of old recommendations after a certain time period
automatically.

Workflow Orchestration
Developing a solution architecture for production workflows
from scratch is a complex process. When adding more fea-
tures to our distributed recommender system (Ramanathan,
Shinada, and Palaniappan 2020), the more fine-grained the
microservices become, the more the chances of the connec-
tions between them getting messy. To avoid this overhead,
its important we start with a simple architecture and gradu-
ally build granularity.

We organize the sequence of events in our recommenda-
tion workflow as a state machine. The notion of a state ma-
chine allows to abstract the individual microservices and the
connections between them into a sequential structure that

Figure 8: Solution architecture

Figure 9: A successful execution of the workflow

streamlines data access and error handling. For each execu-
tion of the state machine, we parametrize the run by initial-
izing a set of input parameters. In addition to forwarding the
input parameters, every state also forwards a set of output
parameters to its next state(s). Its through these parameters,
the different microservices in our system communicate with
each other dynamically. We used AWS managed infrastruc-
ture to deploy our workflows. Figure 9 shows a sample run
of this end-to-end workflow.

Engineering for Production
Preprocessing the Dataset In live systems, filtering out
noise from data is as important as the modelling algorithm.
We remove users with invalid values for ‘birth-date’ and
‘last login-date’ fields. We ran multiple experiments on dif-

15390

ferent sizes of training data with users who have logged in
the last 7 days, 15 days and 1 month. We found 1 month to
be a reasonable trade-off between user coverage and model
accuracy.

Location-Aware Modelling Users’ location plays a crit-
ical role in recommending relevant people in their neigh-
bourhood. We build region-specific models and before every
retrain cycle, user information is segregated based on their
locations and sent to respective models for retraining. This
reduces model complexity and at the same time allows to
build a scalable system in production.

Precomputing Recommendations Once trained, keeping
the models always online to serve recommendations would
be expensive. We pre-compute the recommendations and
store it in the distributed key-value store so recommenda-
tions can be retrieved in sub-100 ms query time. Further-
more, transferring the recommendations generated from a
cloud instance to the distributed key-value store would take
multiple hours. To this end, we first split the entire recom-
mendations dataset into smaller chunks using an SQL query
engine and store it in an intermediate distributed data store.
One can then spawn multiple Spark workers which upload
the data from the intermediate data store in parallel to the
distributed key-value store.

Off-the-shelf distributed key-value stores like Amazon
DynamoDB provide automatic bandwidth scaling for both
burst loads used to transfer the recommendations dataset and
for sporadic reads that serve recommendations. By leverag-
ing this auto-scaling capability, our upload times reduced
multi-fold from over 12 hours to under 30 minutes.

Live Inference End-point For cold start users who do not
have past interactions, an always-on instance with the de-
ployed model serves as a streaming end-point. For every new
user, we create a pseudo embedding for them and gener-
ate recommendations using an approximate nearest neigh-
bours algorithm2 that retrieves recommendations in sub-
linear query time. We note that the quality of our embed-
dings is robust to the choice of the approximate nearest
neighbours algorithm.

Conclusion
We have presented a practical workflow for a reciprocal rec-
ommendation system from conception to serving the models
in production. Our framework is generic enough that a wide
variety of models can be built on it to learn user embeddings
that model mutual preferences and subsequently generate
candidate recommendations. From a modelling perspective,
while we were able to address the compute-intensive fu-
sion routines that aggregate unidirectional preferences using
GPU instances on the cloud, it’s interesting to explore more
efficient methods to learn mutual preferences in a joint em-
bedding space without having to fuse preferences from two
different sub-spaces. Another line of approach would be to
use neural attention methods to focus on relevant candidates

2https://github.com/spotify/annoy

that embed mutual interest from a large set of past unidirec-
tional preferences.

From an evaluation perspective, while our method
achieves significant gains in offline performance, they are
not representative of online performance which places more
importance on recently active users who would respond to
other users’ interests. Furthermore, online metrices for A/B
testing to evaluate models in traditional recommender sys-
tems cannot be directly extended to reciprocal recommen-
dation systems as they suffer from spill-over effects. Fine-
grained clustering techniques and random assignment strate-
gies for clusters could be devised to assign control and treat-
ment groups. This will make evaluation more robust to net-
work effects.

Finally, more efficient strategies using multi-objective
models for balancing trade off between recommending users
with high potential for mutual likes and new active users can
boost recommendation quality.

Acknowledgments
The authors would like to thank Prof. Hiroaki Kitano from
SBX Corporation, Tokyo for guiding this effort.

References
Agarwal, D.; and Chen, B.-C. 2009. Regression-based latent
factor models. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 19–28.

Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of machine learning research 12(7).

Dziugaite, G. K.; and Roy, D. M. 2015. Neural network
matrix factorization. arXiv preprint arXiv:1511.06443 .

Goldberg, Y.; and Levy, O. 2014. word2vec Explained: de-
riving Mikolov et al.’s negative-sampling word-embedding
method. arXiv preprint arXiv:1402.3722 .

He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; and Chua, T.-S.
2017. Neural collaborative filtering. In Proceedings of the
26th international conference on world wide web, 173–182.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980 .

Kleinerman, A.; Rosenfeld, A.; Ricci, F.; and Kraus, S.
2018. Optimally balancing receiver and recommended
users’ importance in reciprocal recommender systems. In
Proceedings of the 12th ACM Conference on Recommender
Systems, 131–139.

Neve, J.; and Palomares, I. 2019. Latent factor models and
aggregation operators for collaborative filtering in recipro-
cal recommender systems. In Proceedings of the 13th ACM
Conference on Recommender Systems, 219–227.

Pizzato, L.; Rej, T.; Chung, T.; Koprinska, I.; and Kay, J.
2010. RECON: a reciprocal recommender for online dat-
ing. In Proceedings of the fourth ACM conference on Rec-
ommender systems, 207–214.

15391

Ramanathan, R.; Shinada, N. K.; and Palaniappan, S. K.
2020. Building a reciprocal recommendation system at scale
from scratch: Learnings from one of Japans prominent dat-
ing applications. In Fourteenth ACM Conference on Recom-
mender Systems, 566–567.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2012. BPR: Bayesian personalized ranking from
implicit feedback. arXiv preprint arXiv:1205.2618 .
Salakhutdinov, R.; Mnih, A.; and Hinton, G. 2007. Re-
stricted Boltzmann machines for collaborative filtering. In
Proceedings of the 24th international conference on Ma-
chine learning, 791–798.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In Proceedings of the 10th international conference
on World Wide Web, 285–295.
Wang, S.; Tang, J.; Aggarwal, C.; Chang, Y.; and Liu, H.
2017. Signed network embedding in social media. In Pro-
ceedings of the 2017 SIAM international conference on data
mining, 327–335. SIAM.
Xia, P.; Liu, B.; Sun, Y.; and Chen, C. 2015. Reciprocal rec-
ommendation system for online dating. In 2015 IEEE/ACM
International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), 234–241. IEEE.
Xia, P.; Zhai, S.; Liu, B.; Sun, Y.; and Chen, C. 2016. Design
of reciprocal recommendation systems for online dating. So-
cial Network Analysis and Mining 6(1): 32.

15392

